检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭晓荷 周功兵[1] 窦镕飞 裴燕[1] 范康年[1] 乔明华[1] 孙斌[2] 宗保宁[2]
机构地区:[1]上海市分子催化和功能材料重点实验室,复旦大学化学系,上海200433 [2]催化材料与反应工程国家重点实验室,中国石化石油化工科学研究院,北京100083
出 处:《物理化学学报》2014年第5期932-942,共11页Acta Physico-Chimica Sinica
基 金:国家重点基础研究发展规划项目(973)(2012CB224804);国家自然科学基金(21373055);上海市科委科技基金(08DZ2270500);北京高能所同步辐射实验室开放课题;中石化技术开发课题(S411063)资助~~
摘 要:制备了多种金属-有机骨架(MOF)材料,采用浸渍-化学还原法制备了非晶态Ru-B/MOF催化剂,考察了它们在苯部分加氢反应中的催化性能.催化性能评价结果表明,这些催化剂的初始反应速率(r0)顺序为Ru-B/MIL-53(Al)>Ru-B/MIL-53(Al)-NH2>Ru-B/UIO-66(Zr)>Ru-B/UIO-66(Zr)-NH2>Ru-B/MIL-53(Cr)>Ru-B/MIL-101(Cr)>>Ru-B/MIL-100(Fe),环己烯初始选择性(S0)顺序为Ru-B/MIL-53(Al)≈Ru-B/MIL-53(Cr)>Ru-B/UIO-66(Zr)-NH2>Ru-B/MIL-101(Cr)>Ru-B/MIL-53(Al)-NH2>Ru-B/UIO-66(Zr)≈Ru-B/MIL-100(Fe).催化性能最好的Ru-B/MIL-53(Al)催化剂上的r0和S0分别为23 mmol·min-1·g-1和72%.采用多种手段,对催化性能差异最为显著的Ru-B/MIL-53(Al)和Ru-B/MIL-100(Fe)催化剂的物理化学性质进行了表征.发现MIL-53(Al)载体能够更好地分散Ru-B纳米粒子,粒子的平均尺寸为3.2 nm,而MIL-100(Fe)载体上Ru-B纳米粒子团聚严重,粒径达46.6 nm.更小的粒径不仅能够提供更多的活性位,而且也有利于环己烯选择性的提高.对Ru-B/MIL-53(Al)催化剂的反应条件进行了优化,在180°C和5 MPa的H2压力下,环己烯得率可达24%,展示了MOF材料用作苯部分加氢催化剂载体的良好前景.A series of metal-organic framework (MOF) materials were synthesized together with the corresponding amorphous Ru-B/MOF catalysts, which were prepared by the impregnation-chemical reduction method. These materials were subsequently evaluated for the first time as catalysts for the partial hydrogenation of benzene to cyclohexene. The results for the initial hydrogenation rate (ro) for the different catalysts followed the trend Ru-B/M-L-53(Al)〉Ru-B/MIL-53(Al)-NH2〉Ru-B/UIO-66(Zr)〉Ru-B/UIO-66(Zr)-NH2〉Ru-B/MIL-53(Cr)〉 Ru-B/MIL-101(Cr)〉〉Ru-B/MIL-100(Fe), whereas the initial selectivity for cyclohexene (So)was of the order ofRu-B/MIL-53(Al)≈Ru-B/MIL-53(Cr)〉Ru-B/UIO-66(Zr)-NH2〉Ru-B/MIL-101(Cr)〉Ru-B/MIL-53(Al)-NH2〉Ru-B/UIO- 66(Zr)≈Ru-B/MIL-100(Fe). The Ru-B/MIL-53(AI) catalyst exhibited the highest r0 and So values of 23 mmol. min-1. g-1 and 72%, respectively. The characterization results demonstrated that the Ru-B amorphous alloy nanoparticles were highly dispersed on MIL-53(AI) with the average diameter of 3.2 nm. In contrast, the Ru-B nanoparticles on MIL-100(Fe) had an average diameter of 46.6 nm. The smaller Ru-B nanoparticles not only provided more active sites for the hydrogenation to occur, but could also be beneficial in the formation of cyclohexene. The reaction conditions were further optimized for the Ru-B/MIL-53(AI) catalyst. At 180 ℃ under a H2 pressure of 5 MPa, a cyclohexene yield of 24% was obtained, highlighting the potential of MOF materials as catalyst supports for the partial hydrogenation of benzene.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177