An asymmetric Orlicz centroid inequality for probability measures  被引量:1

An asymmetric Orlicz centroid inequality for probability measures

在线阅读下载全文

作  者:HUANG QingZhong HE BinWu 

机构地区:[1]Department of Mathematics,Shanghai University

出  处:《Science China Mathematics》2014年第6期1193-1202,共10页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No. 11371239);Shanghai Leading Academic Discipline Project (Grant No. J50101);the Research Fund for the Doctoral Programs of Higher Education of China (Grant No. 20123108110001).

摘  要:Using M-addition,an asymmetric Orlicz centroid inequality for absolutely continuous probability measures is established corresponding to Paouris and Pivovarov’s recent result on the symmetric case.As an application,we extend Haberl and Schuster’s asymmetric Lp centroid inequality from star bodies to compact sets.Using M-addition, an asymmetric Orlicz centroid inequality for absolutely continuous probability measures is established corresponding to Paouris and Pivovarov's recent result on the symmetric case. As an application, we extend Haberl and Schuster's asymmetric Lp centroid inequality from star bodies to compact sets.

关 键 词:M-addition Orlicz centroid inequality asymmetric Orlicz centroid bodies asymmetric Lp cen-troid bodies 

分 类 号:O18[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象