检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]National Synchrotron Radiation Laboratory,University of Science and Technology of China
出 处:《Chinese Physics C》2014年第5期110-113,共4页中国物理C(英文版)
基 金:Supported by Major State Basic Research Development Program of China(2011CB808301);National Natural Science Foundation of China.(11205156)
摘 要:In order to meet the requirements of the synchrotron radiation users, a fully coherent VUV free electron laser (FEL) has been preliminarily designed. One important goal of this design is that the radiation wavelength can be easily tuned in a broad range (70 170 nm). In the light of the users' demand and our actual conditions, the self-seeding scheme is adopted for this proposal. Firstly, we attempted to fix the electron energy and only changed the undulator gap to vary the radiation wavelength; however, our analysis implies that this is difficult because of the great difference of the power gain length and FEL efficiency at different wavelengths. Therefore, we have considered dividing the wavelength range into three subareas. In each subarea, a constant electron energy is used and the wavelength tuning is realized only by adjusting the undulator gap. The simulation results show that this scheme has an acceptable performance.In order to meet the requirements of the synchrotron radiation users, a fully coherent VUV free electron laser (FEL) has been preliminarily designed. One important goal of this design is that the radiation wavelength can be easily tuned in a broad range (70 170 nm). In the light of the users' demand and our actual conditions, the self-seeding scheme is adopted for this proposal. Firstly, we attempted to fix the electron energy and only changed the undulator gap to vary the radiation wavelength; however, our analysis implies that this is difficult because of the great difference of the power gain length and FEL efficiency at different wavelengths. Therefore, we have considered dividing the wavelength range into three subareas. In each subarea, a constant electron energy is used and the wavelength tuning is realized only by adjusting the undulator gap. The simulation results show that this scheme has an acceptable performance.
关 键 词:wavelength range self-seeding free electron laser undulator gap electron energy
分 类 号:TN24[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40