日光温室地源热泵供暖碳足迹的生命周期分析  被引量:5

Carbon footprint of ground source heat pump system in heating solar greenhouse based on life cycle assessment

在线阅读下载全文

作  者:柴立龙[1,2] 马承伟[3] 刘明池[1,2] 王宝驹[1,2] 武占会[1,2] 许勇[1,4] 

机构地区:[1]北京市农林科学院国家蔬菜工程技术研究中心,北京100097 [2]农业部都市农业(北方)重点实验室,北京100097 [3]中国农业大学水利与土木工程学院,北京100083 [4]农业部华北地区园艺作物生物学与种质创制重点实验室,北京100097

出  处:《农业工程学报》2014年第8期149-155,共7页Transactions of the Chinese Society of Agricultural Engineering

基  金:北京市自然科学基金项目(6132011);北京市农林科学院青年基金项目(QNJJ201212)

摘  要:为分析日光温室地源热泵供暖的碳足迹,该文以日光温室地源热泵供暖系统中浅层地热能的存储、提取、制冷压缩提升和温室末端供暖整个过程为研究对象,对系统的温室气体排放和单位温室供暖面积的排放水平进行分析,构建基于生命周期分析LCA(life cycle assessment)的日光温室地源热泵供暖碳足迹分析方法。同时以北京地区日光温室地源热泵系统冬季供暖采集的试验数据为依据,分析和计算出北京地区日光温室在采用燃煤和燃气2种不同发电方式下地源热泵系统的供暖碳足迹和基于20 a和100 a温室地源热泵供暖碳足迹的全球变化潜能(global warming potential,GWP,单位为二氧化碳当量排放-CO2-eq.)的变化。研究表明,在北京地区采用燃煤和燃气驱动地源热泵系统的碳足迹GWP分别为257和72 g/(m2·d)。基于100 a的GWP总量比20 a的计算值分别减少了1.6%和5.4%。对比荷兰Venlo型温室天然气供暖,该研究中采用燃煤发电驱动日光温室地源热泵供暖的碳足迹是其1.39倍,而燃气发电驱动日光温室地源热泵供暖的碳足迹仅为Venlo型温室供暖的41%。采用燃气发电驱动的地源热泵供暖系统具有更低的碳足迹。The Chinese solar greenhouse, characterized by east-west orientation, a transparent camber south roof, and a solid north roof and east and west walls, is utilized primarily in horticulture in northern China. This design of greenhouse can keep the sheltering plants from freezing in winter because of the“greenhouse effect”. However, the healthy growing of plants still needs assisted heating especially during winter nights. The coal-fired heating system (CFHs) and the natural gas-fired heating system (GFHs) both have been widely applied to heat greenhouses. However, the conventional fossil energy sources, such as coal and natural gas, are non-renewable and are the major greenhouse gas (GHG) contributors. The overusing of fossil fuel in agricultural production has been directly or indirectly related to the global climate change, environmental pollution, and energy crisis. Therefore, renewable and clean energy, such as solar, geothermal, and shallow geothermal has been increasingly applied for greenhouse heating or cooling across the world. Ground source heat pump (GSHP) technology has dual functions in heating and cooling. It is one of the most rapidly growing green technologies for heating and air-conditioning in recent years. The GSHP application for solar greenhouse heating has proven to have a high primary energy ratio or coefficient of performance (COP) in previously studies. However, the environmental performance of the GSHP in heating solar greenhouse, such as its carbon footprint, is still unknown. Systematic and long-term study of the specific GSHP greenhouse-heating was required to evaluate its carbon footprint based on life cycle assessment (LCA) method. The GSHP in a Chinese solar greenhouse was studied to evaluate its environmental performance in greenhouse heating. The environmental performance of the GSHP was analyzed based on the field test data and the performance analysis models that were developed in this study. According to the study, in a 480 m2 Chinese solar greenhous

关 键 词:温室 供暖 二氧化碳 地源热泵 碳足迹 生命周期分析 

分 类 号:S625.51[农业科学—园艺学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象