机构地区:[1]Materials Science and Engineering, The Royal Institute of Technology
出 处:《Chinese Science Bulletin》2014年第15期1635-1640,共6页
基 金:Funding within the Hero-m project supported by VINNOVA(the Swedish Governmental Agency for Innovation Systems),KTH,and Swedish industry
摘 要:The mapping of the human genome is an important basis for the development of new medicals and medical treatments.Consequently,it has attracted tremendous research funding over the last decade.On June2011,the Materials Genome Initiative was announced by the US President Obama as collaboration on modeling and advanced materials databases.Unfortunately,the materials genome was given a rather vague definition in the announcement.However,the materials genome should be defined in analogy with biological genomes and one may then conclude that:at any moment,the performance of a specific material depends on its chemical composition(inherent property stored in its genome)and its environment(external interactions–processing–conditions during usage).The materials genome should thus be defined as a set of information encoded in the language of thermodynamics obtained by careful assessment of experimental data and quantum mechanical calculations from which certain conclusions about the material can be drawn.The CALPHAD databases contain the thermodynamic and kinetic properties of a materials system.Such databases allow the prediction of materials structure as well as its response to processing and usage conditions,and are major parts of integrated computational materials engineering.The mapping of the human genome is an important basis for the development of new medicals and medical treatments. Consequently, it has attracted tre- mendous research funding over the last decade. On June 2011, the Materials Genome Initiative was announced by the US President Obama as collaboration on modeling and advanced materials databases. Unfortunately, the materials genome was given a rather vague definition in the announcement. However, the materials genome should be defined in analogy with biological genomes and one may then conclude that: at any moment, the performance of a specific material depends on its chemical composition (inherent property stored in its genome) and its environ- ment (external interactions-processing-conditions during usage). The materials genome should thus be defined as a set of information encoded in the language of thermody- namics obtained by careful assessment of experimental data and quantum mechanical calculations from which certain conclusions about the material can be drawn. The CALPHAD databases contain the thermodynamic and kinetic properties of a materials system. Such databases allow the prediction of materials structure as well as its response to processing and usage conditions, and are major parts of integrated computational materials engineering.
关 键 词:材料数据库 人类基因组 相图计算 量子力学计算 基因组计划 动力学性质 科研经费 美国总统
分 类 号:TB303[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...