检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Hunan Key Laboratory for Computation and Simulation in Science and Engineering,Xiangtan University [2]School of Mathematical Sciences,South China Normal University
出 处:《Acta Mathematica Scientia》2014年第3期673-690,共18页数学物理学报(B辑英文版)
基 金:supported by NSFC Project(11301446,11271145);China Postdoctoral Science Foundation Grant(2013M531789);Specialized Research Fund for the Doctoral Program of Higher Education(2011440711009);Program for Changjiang Scholars and Innovative Research Team in University(IRT1179);Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(2013RS4057);the Research Foundation of Hunan Provincial Education Department(13B116)
摘 要:We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L^∞ norm and weighted L^2-norm. The numerical examples are given to illustrate the theoretical results.
关 键 词:Spectral Jacobi-collocation method fractional order integro-differential equations Caputo derivative
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143