检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄翔[1,2] 陈伟[3] 宋云奎[3] 陈志刚[1]
机构地区:[1]中国能源建设集团广东省电力设计研究院,广州510663 [2]中山大学信息科学与技术学院,广州510006 [3]中国科学院软件研究所,北京100190
出 处:《自动化学报》2014年第5期942-951,共10页Acta Automatica Sinica
基 金:国家自然科学基金(61272013);广东省自然科学基金(S2013040011941)资助~~
摘 要:随着按需供给资源使用模式的推广,软件的资源需求已成为资源优化控制的重要属性.监测和估算是目前常用的资源消耗获取方法,但监测工具难以在运行时准确度量短任务的资源需求,回归分析方法又因受到多元共线性和不确定性因素的影响,导致其取值精度下降.本文提出了一种基于Kalman滤波的资源需求估算方法.该方法建立了可度量属性集与不可度量的资源需求间的关联,并利用滤波过滤度量过程中的噪声,达到降低估算误差的目的.基准测试的结果表明,通过合理的设置滤波参数,本方法能够快速逼近真实值,且平均误差小于8%.As the development of demand resource provision, resource demands of software is becoming one of the most important attributes of resource management. Measurement and estimation are widely used in fetching the demands. However, it is hard to measure the short jobPs resource demands by current measurement tools, and the regression methods suffer from the well-studied problem of multicollinearity. Therefore, the estimated results are not confident. In order to improve the estimation precision, we propose a Kalman filter based approach, which can predict the unobservable attribute by observable attributes, and filter the noise existing in the measurement. At last, we test our approach with a benchmark and compare the relative errors, which can demonstrate that with the reasonable parameters, our approach can get close to the real demands quickly, and get the estimated value with the mean error less than 8 %.
分 类 号:TN713[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.155.106