Unique Weighted Representation Basis of Integers  被引量:1

Unique Weighted Representation Basis of Integers

在线阅读下载全文

作  者:Ran XIONG 

机构地区:[1]School of Mathematics and Computer Science, Anhui Normal University

出  处:《Journal of Mathematical Research with Applications》2014年第3期332-336,共5页数学研究及应用(英文版)

基  金:Supported by the National Natural Science Foundation of China(Grant No.10901002);the Natural Science Foundation of Anhui Province(Grant No.1208085QA02)

摘  要:Let k1 ,k2 be nonzero integers with (k1, k2) = 1 and k1kk ≠-1. In this paper, we prove that there is a set A Z such that every integer can be represented uniquely in the form n = k1a1 + k2a2, a1,a2 ∈ A.Let k1 ,k2 be nonzero integers with (k1, k2) = 1 and k1kk ≠-1. In this paper, we prove that there is a set A Z such that every integer can be represented uniquely in the form n = k1a1 + k2a2, a1,a2 ∈ A.

关 键 词:additive basis representation function. 

分 类 号:O156[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象