融合多特征的运动一致性图像分割  被引量:3

Motion coherence image segmentation fused with multi-feature

在线阅读下载全文

作  者:魏国剑[1] 侯志强[1] 李武[1] 余旺盛[1] 

机构地区:[1]空军工程大学信息与导航学院,西安710077

出  处:《中国图象图形学报》2014年第5期701-707,共7页Journal of Image and Graphics

基  金:国家自然科学基金项目(61175029)

摘  要:目的在彩色图像分割中,光流法能够得到运动区域,但难以获得运动目标准确的分割边界,而常用的算法往往会产生过分割。为了克服光流法的不足,在保留显著性区域的同时抑制过分割,从而获得具有运动一致性区域的分割结果,提出融合多特征的运动一致性图像分割算法。方法首先通过Mean Shift算法获取图像的初始分割,然后利用空域信息,包括颜色、边缘和区域面积等对视觉感知上具有相似性的区域进行合并,再利用时域信息进行运动一致性区域合并,最终得到分割结果。结果实验结果表明通过结合时空信息,该方法能够有效抑制过分割,不仅弥补了光流场不能准确提取目标边缘的不足,而且提高了分割目标的完整性。结论与两种流行的彩色图像分割算法相比,所提方法获得了更加理想的结果。Objective During the segmentation of color image,optical flow methods can acquire the moving regions,but it can hardly obtain the correct segmentation boundaries of moving objects.Meanwhile,familiar algorithms usually suffer from over-segmentation.To overcome the shortage of optical flow method and suppress the over-segmentation,while preserving the salient regions,a new motion coherence image segmentation algorithm fused with multi-feature is proposed.Method First,the initial regions are acquired by the Mean Shift algorithm; second,the regions with homogenization of visual sensing are merged by utilizing spatial information (including color,edge and region area) ; third,the motion coherence regions are merged by using temporal information; finally,the segmentation result is obtained.Result The experimental results demonstrate that by combining spatial-temporal information,the proposed method can suppress over-segmentation effectively.It therefore does not only make up for the shortage that correct object edges can hardly be acquired by using optical flow,while also increasing the completeness of the segmented objects.Conclusion Compared with two popular color image segmentation algorithms,our method gets better results.

关 键 词:彩色图像分割 运动一致性 区域相似性度量 区域合并 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象