检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李明泽[1] 谢雨[1] 邸雪颖[1] 范文义[1]
机构地区:[1]东北林业大学,哈尔滨150040
出 处:《东北林业大学学报》2014年第5期60-63,82,共5页Journal of Northeast Forestry University
基 金:"十二五"国家科技支撑计划项目(2011BAD08B01)
摘 要:利用大兴安岭林区外业调查的72块样地数据、遥感影像数据及地形数据,建立森林地表可燃物载量估算模型,推算林区可燃物载量。初步选出19个自变量因子,包括从校正后的林区遥感图像上计算的各种植被指数(如:坡度、高程等),采用SPSS统计软件分析这些变量与对应样地可燃物载量的相关性,分析可燃物载量与各类遥感变量间的相互关系,提取相关性高的自变量建立常规多元统计模型、线性与非线性偏最小二乘模型来估算可燃物载量。结果表明:多元统计模型逐步回归法建立的模型相关系数0.797,决定系数0.6346,拟合精度73.62%,预测精度70.2%,均方根误差6.9 t/hm2。线性偏最小二乘模型的0.7575,拟合精度78.98%,预测精度76.3%,均方根误差2.49 t/hm2。非线性偏最小二乘模型决定系数为0.832 5,拟合精度83.82%,预测精度82.67%,均方根误差2.45t/hm2。可见,偏最小二乘回归法要优于逐步回归法,非线性偏最小二乘法优于线性偏最小二乘法。With 72 pieces of sample data in the Daxing' an Mountains forest region field, remote sensing image data and the terrain data, we established the forest surface fuel loads estimation model and estimated the forest fuel loads. We selected 19 preliminary independent variable factors including the indexes from the forest after correcting remote sensing image on all kinds of vegetation indexes (slope and elevation) by SPSS to analyze the correlation of these variables with the correspond- ing sample fuel loads and the relationship between fuel loads and all kinds of remote sensing variables, to extract the high correlation between independent variables to establish conventional multivariate statistical model and the linear and nonlinear partial least squares models to estimate the fuel loads. The multivariate statistical model by regression method is with the correlation coefficient of 0. 797, the decision coefficient of 0. 634 6, the fitting accuracy of 73.62%, the prediction accuracy of 70.2%, and the root mean square error of 6.9 t/hm2. Linear model of least squares is 0. 757 5 with the fitting accuracy of 78.98% , the prediction accuracy of 76.3% , and the root means square error of 2.49 t/hm2. Nonlinear partial least squares model decision coefficient is 0.832 5, the fitting accuracy is 83.82%, and the prediction accuracy is 82.67% with the root mean square error of 2.45 t/hm2. The partial least squares regression method is superior to the stepwise regression method, and the nonlinear partial least squares is superior to linear partial least squares.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249