检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学机械传动国家重点实验室,重庆400044
出 处:《中国机械工程》2014年第10期1374-1380,共7页China Mechanical Engineering
基 金:国家自然科学基金资助重点项目(51035008)
摘 要:为了提高发动机故障分类的准确率和成功率,提出了基于角域信号特征统计量的发动机故障分类方法。包括:利用编码器进行发动机振动信号的等角度采样;采用小波包分析和相关系数法获取发动机角域信号的特征阶次;选取特征阶次信号的能量比、标准差比、谱能量比及谱均值比4组参数作为角域信号特征统计量来提取发动机故障特征;采用支持向量机法对发动机故障进行分类。连杆轴承配合间隙故障的台架试验结果证明:相比于传统的分类方法,该方法明显提高了发动机故障分类的准确率。In order to improve the precision rate and success rate of engine fault classification,a new fault classification based on the characteristic statistics in angle domain was proposed.The new method used an optical encoder to acquire engine rotational vibration signals of equal angle sampling. Wavelet packet analysis and correlation coefficient method were applied to acquire the characteristic order of the engine signals in angle domain.Energy ratio,standard deviation ratio,spectrum energy ra-tio and spectrum mean ratio of the characteristic order were regarded as the characteristic statistics in angle domain to extract engine fault features.The method of support vector machines was also adopted to classify the engine faults.Experimental results using signals recorded from an engine with an im-proper fit clearance existed in the connecting rod bearing show,compared with the traditional fault classification,this new method can improve precision rate of the fault classification.
分 类 号:TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.161.87