小波熵在脑电信号分析中的应用  

Application of wavelet entropy in EEG analysis

在线阅读下载全文

作  者:张美云[1] 张本恕[2] 

机构地区:[1]天津市人民医院神经内科,300121 [2]天津医科大学总医院神经内科,300052

出  处:《国际生物医学工程杂志》2014年第2期122-125,共4页International Journal of Biomedical Engineering

基  金:天津市卫生局科技基金资助项目(2011KY21);天津市应用基础与前沿技术研究计划项目(14JCYBJC27000)

摘  要:小波熵是一个衡量非线性信号多尺度动力学行为有序、无序程度的量化指标,其可提供信号非线性动力学过程复杂程度的信息.近年来,小波熵在脑电信号中的研究日益受到关注,国内外学者用小波熵研究脑电信号、诱发电位、事件相关电位等的复杂程度,进一步揭示了大脑电活动的动力学机制.其主要应用于大脑感知、认知活动的研究,癫痫脑电信号的动态观测,睡眠、网络成瘾、头外伤后脑神经的康复等几个方面.小波熵不仅可以显示受到刺激后脑电信号频率上同步化的动态演变过程,而且可以有效区分癫痫发作前状态和癫痫发作状态,从而加深了对脑动力学机制的理解,成为认知功能研究的一种新的方法,显示了在脑电信号分析中良好的应用前景.Wavelet entropy, as a powerful quantitative parameter to measure the ordering/disordering level of multi-scale dynamical behavior for nonlinear signals, provides information of complex degree in nonlinear dynamical process. Recently, the wavelet entropy is attracting more and more attention in electroencephalogram (EEG) signal analysis, which is employed by domestic and overseas scholars to investigate the complex degree of EEG, evoked potential and event-related potential, and to profoundly reveal the dynamic mechanism of physiological electrical activity in the brain. It is mainly used in the research of perception, cognitive activity, dynamic observation of epileptic EEG signals, sleeping, internet addiction and rehabilitation of brain after injury. Not only can the wavelet entropy represent the dynamic evolution process of the frequency synchronization for stimulated EEG signals, but also distinguish the states before and 'after epileptic seizure, as well as to deepen the understanding of brain dynamics mechanism. The wavelet entropy is becoming a new tool for investigating cognition and exhibits a good application prospect in EEG signal analysis.

关 键 词:小波熵 认知 癫痫 脑电图 

分 类 号:R318.04[医药卫生—生物医学工程] R741.044[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象