检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,合肥230009
出 处:《计算机工程与应用》2014年第10期78-81,151,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.60873195);安徽省国际科技合作计划项目(No.10080703001)
摘 要:无线传感器网络(Wireless Sensor Networks,WSN)负责感知、采集、处理和监控环境数据,但是容易受限于资源。压缩感知(Compressed Sensing,CS)理论表明,利用最优化理论,稀疏信号可以从少量的非自适应线性投影中高概率精确恢复。根据CS理论设计WSN的数据压缩方法只依赖于信号内在的结构和内容,而不是信号的带宽,弥补了WSN的不足;提出了基于稀疏随机投影的编码方法;仿真结果表明系统在满足误差要求条件下构造的数据包减少至结点数目的30%,提高了WSN通信效率,降低了系统能耗。Wireless Sensor Networks(WSN)are responsible for sensing, collecting, processing and monitoring environmental data, but resource is easily limited. The newly emerging Compressed Sensing(CS)theory holds that sparse signals can be exactly reconstructed with high probability from a small amount of non-adaptive linear measurement through optimization. A data compression method which is dependent only on the structure and content of the signal, rather than the bandwidth of the signal is designed by sparse random projections through network coding. The results of simulation show that this system not only improves the efficiency of WSN communication by reducing packets to 30% number of nodes, but also reduces the system energy consumption under the error requirement.
关 键 词:压缩感知 无线传感器网络 分布式压缩感知 随机投影 分布式数据压缩
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.35.130