检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2014年第10期212-215,232,共5页Computer Engineering and Applications
摘 要:为了准确地进行SAR图像目标识别,提出一种基于稀疏表示的SAR目标识别方法,在用主成分分析(PCA)进行降维的前提下,利用降维后的训练样本构建稀疏线性模型,通过?1范数最优化求解测试样本的稀疏系数解x,利用系数的稀疏性分布进行目标的分类识别。基于MSTAR数据进行了仿真验证,实验证明,基于稀疏表示的SAR目标识别方法在一定的特征维数下能够获得很好的识别性能,在目标方位角未知的情况下识别率仍可达到98%以上。In order to recognize SAR target accurately, an identification method based on sparse representation is proposed. The training samples after dimensionality reduction using principal component analysis are used to build a sparse linear model. The sparse coefficient solution x of the test sample is solved by ?1 -minimization. The identification task is solved by utilizing the sparse distribution of the sparse coefficient. Experimental results with MSTAR dataset verify that the identification method based on sparse representation in a certain characteristic dimension can obtain good recognition performance, and the recognition rate can reach more than 98%without knowing the target azimuth.
关 键 词:合成孔径雷达(SAR) 目标识别 稀疏表示 ξ1范数最优化
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40