检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李靖平[1]
机构地区:[1]黎明职业大学,福建泉州362000
出 处:《浙江万里学院学报》2014年第2期93-98,97,共6页Journal of Zhejiang Wanli University
基 金:福建省教育厅B类科技研究项目(JB12487S);泉州市技术研究与开发项目高校协同创新科技项目(20122131);泉州市科技局科技资助项目(2008G16).
摘 要:文章将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用。对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别。基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA比2DPCA算法具有更高的识别率。结论 M-2DPCA充分利用了图像的协方差信息,在人脸识别方面具有较高的识别率和鲁棒性方面,对进一步研究人脸识别具有重要的意义。Aim: The block theory and two-dimensional principal component analysis (2DPCA) were combined, and the modular two-dimensional principal component analysis (M-2DPCA) was studied in face recognition. Methods: The original image matrix was divided into modular image matrixes , and the image covariance matrix was formed directly by using sub-image matrixes , and its eigenvectors were derived. The eigenvectors were used to extract and analyze image feature for face recognition. Results:The Experiments based on the Yale face database showed that it had a higher recognition rate of M-2DPCA than 2DPCA, under the same training specimens and eigenvectors. Conclusion: The information of image covariance matrix was fully utilized in M-2DPCA method , which had an admirable recognition rate and robustness on face recognition, and it was important to further research on face recognition.
关 键 词:二维主成分分析 分块二维主成分分析法 特征提取 人脸识别 TWO-DIMENSIONAL Principal COMPONENT Analysis (2DPCA)
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.72