Born-series approximation to volume-scattering wave for piecewise heterogeneous media  

Born-series approximation to volume-scattering wave for piecewise heterogeneous media

在线阅读下载全文

作  者:Geng-Xin Yu Li-Yun Fu 

机构地区:[1]Beijing Chinese Language and Culture College [2]Key Laboratory of the Earth’s Deep Interior,Institute of Geology and Geophysics,Chinese Academy of Sciences

出  处:《Earthquake Science》2014年第2期159-168,共10页地震学报(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant Nos. 41204097 and 41130418);the China National Major Science and Technology Project (2011ZX05023-005-004)

摘  要:An efficient approximate scheme is presented for wave-propagation simulation in piecewise heterogeneous media by applying the Born-series approximation to volume-scattering waves. The numerical scheme is tested for dimensionless frequency responses to a heterogeneous alluvial valley where the velocity is perturbed randomly in the range of 5 %–25 %,compared with the full-waveform numerical solution. Then,the scheme is extended to a heterogeneous multilayered model by calculating synthetic seismograms to evaluate approximation accuracies Numerical experiments indicate that the convergence rate of this method decreases gradually with increasing velocity perturbations. The method has a fast convergence for velocity perturbations less than 15 %. However,the convergence becomes slow drastically when the velocity perturbation increases to 20 %. The method can hardly converge for the velocity perturbation up to 25 %.An efficient approximate scheme is presented for wave-propagation simulation in piecewise heterogeneous media by applying the Born-series approximation to volume-scattering waves. The numerical scheme is tested for dimensionless frequency responses to a heterogeneous alluvial valley where the velocity is perturbed randomly in the range of 5 %–25 %,compared with the full-waveform numerical solution. Then,the scheme is extended to a heterogeneous multilayered model by calculating synthetic seismograms to evaluate approximation accuracies Numerical experiments indicate that the convergence rate of this method decreases gradually with increasing velocity perturbations. The method has a fast convergence for velocity perturbations less than 15 %. However,the convergence becomes slow drastically when the velocity perturbation increases to 20 %. The method can hardly converge for the velocity perturbation up to 25 %.

关 键 词:Generalized Lippmann–Schwinger equation Piecewise heterogeneous media Born-series approximation Volume-scattering waves 

分 类 号:P631.4[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象