Polarization multiplexing QPSK signal transmission in optical wireless-over f iber integration system at W-band  被引量:3

Polarization multiplexing QPSK signal transmission in optical wireless-over f iber integration system at W-band

在线阅读下载全文

作  者:肖江南 汤婵娟 李欣颖 余建军 黄星星 杨超 迟楠 

机构地区:[1]Department of Communication Science and Engineering, and Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University

出  处:《Chinese Optics Letters》2014年第5期11-14,共4页中国光学快报(英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.61177071and 61250018);the National"863"Program of China(Nos.2011AA010302 and 2012AA011302);the National Key Technology R&D Program of China(No.2012BAH18B00);the International Cooperation Program of Shanghai Science and Technology Association(No.12510705600)

摘  要:We propose and experimentally demonstrate a novel scheme to realize polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission over fiber, wireless and fiber at Wband (75-110 GHz). The generation of polarization multiplexing millimeter-wave (mm-wave) wireless signal is based on the photonic technique. After 20-km fiber transmission, polarization diversity and heterodyne beating are implemented to convert the polarization components of the polarization-multiplexing signals from the optical baseband to W-band so that up to 16 Gb/s mm-wave signals can be delivered over 2-m 2~2 multiple-input multiple-output (MIMO) wireless link. At the receiver base station (BS), polarization combination reconstructs the PDM-QPSK signal which is then launched into another 20-km fiber. In the experiment, coherent detection is introduced to improve receiver sensitivity and constant modulus algorithm (CMA) is applied for polarization de-multiplexing. The bit-error-ratio (BER) for 16-Gb/s PDM- QPSK signal delivery is below the forward-error-correction (FEC) threshold of 3.8× 10-3 with the optical signal-to-noise ratio (OSNR) above 11.8 dB.We propose and experimentally demonstrate a novel scheme to realize polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission over fiber, wireless and fiber at Wband (75-110 GHz). The generation of polarization multiplexing millimeter-wave (mm-wave) wireless signal is based on the photonic technique. After 20-km fiber transmission, polarization diversity and heterodyne beating are implemented to convert the polarization components of the polarization-multiplexing signals from the optical baseband to W-band so that up to 16 Gb/s mm-wave signals can be delivered over 2-m 2~2 multiple-input multiple-output (MIMO) wireless link. At the receiver base station (BS), polarization combination reconstructs the PDM-QPSK signal which is then launched into another 20-km fiber. In the experiment, coherent detection is introduced to improve receiver sensitivity and constant modulus algorithm (CMA) is applied for polarization de-multiplexing. The bit-error-ratio (BER) for 16-Gb/s PDM- QPSK signal delivery is below the forward-error-correction (FEC) threshold of 3.8× 10-3 with the optical signal-to-noise ratio (OSNR) above 11.8 dB.

关 键 词:QPSK OVER Polarization multiplexing QPSK signal transmission in optical wireless-over f iber integration system at W-band PDM OSNR 

分 类 号:O436.3[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象