机构地区:[1]School of Electronic Engineering, Beijing University of Posts and Telecommunications
出 处:《The Journal of China Universities of Posts and Telecommunications》2014年第2期32-39,共8页中国邮电高校学报(英文版)
基 金:supported by the National Natural Science Foundation of China(61302081);the National Science and Technology Major Project(2013ZX03003005);the National Key Technology Support Program(2012BAH41F03)
摘 要:As one promising technology for indoor coverage and service offloading from the conventional cellular networks, femtocells have attracted considerable attention in recent years. However, most of previous work are focused on resource allocation during the access period, and the backhaul involved resource allocation is seriously ignored. The authors studied the backhaul resource allocation in the wireless backhaul based two-tier heterogeneous networks (HetNets), in which cross-tier interference control during access period is jointly considered. Assuming that the macrocell base station (MBS) protects itself from interference by pricing the backhaul spectrum allocated to femtocells, a Stackelberg game is formulated to work on the joint utility maximization of the macrocell and femtocells subject to a maximum interference tolerance at the MBS. The closed-form expressions of the optimal strategies are obtained to characterize the Stackelberg equilibriums for the proposed games, and a backhaul spectrum payment selection algorithm with guaranteed convergence is proposed to implement the backhaul resource allocation for femtocell base stations (FBSs). Simulations are presented to demonstrate the Stackelberg equilibrium (SE) is obtained by the proposed algorithm and the proposed scheme is effective in backhaul resource allocation and macrocell protection in the spectrum-sharing HetNets.As one promising technology for indoor coverage and service offloading from the conventional cellular networks, femtocells have attracted considerable attention in recent years. However, most of previous work are focused on resource allocation during the access period, and the backhaul involved resource allocation is seriously ignored. The authors studied the backhaul resource allocation in the wireless backhaul based two-tier heterogeneous networks (HetNets), in which cross-tier interference control during access period is jointly considered. Assuming that the macrocell base station (MBS) protects itself from interference by pricing the backhaul spectrum allocated to femtocells, a Stackelberg game is formulated to work on the joint utility maximization of the macrocell and femtocells subject to a maximum interference tolerance at the MBS. The closed-form expressions of the optimal strategies are obtained to characterize the Stackelberg equilibriums for the proposed games, and a backhaul spectrum payment selection algorithm with guaranteed convergence is proposed to implement the backhaul resource allocation for femtocell base stations (FBSs). Simulations are presented to demonstrate the Stackelberg equilibrium (SE) is obtained by the proposed algorithm and the proposed scheme is effective in backhaul resource allocation and macrocell protection in the spectrum-sharing HetNets.
关 键 词:FEMTOCELL Stackelberg game backhaul resource allocation interference management
分 类 号:TN929.5[电子电信—通信与信息系统] TP393[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...