Property(ω) and Its Perturbations  被引量:1

Property(ω) and Its Perturbations

在线阅读下载全文

作  者:Wei Juan SHI Xiao Hong CAO 

机构地区:[1]College of Mathematics and Information Science, Shaanxi Normal University

出  处:《Acta Mathematica Sinica,English Series》2014年第5期797-804,共8页数学学报(英文版)

基  金:Supported by the Fundamental Research Funds for the Central Universities(Grant No.GK201301007);National Natural Science Foundation of China(Grant No.11371012)

摘  要:Abstract A Hilbert space operator T is said to have property (ω1) if σα(T)/σaw(T) π00(T), where σα(T) andσαw(T) denote the approximate point spectrum and the Weyl essential approximate point spectrum of T respectively, and π00(T) ---- {λ∈ iso σ(T), 0 〈 dim N(T- λI) 〈 ∞}. Ifσα(T)/σαw(T) = π00(T), we say T satisfies property (w). In this note, we investigate the stability of the property (wi) and the property (w) under compact perturbations, and we characterize those operators for which the property (wi) and the property (w) are stable under compact perturbations.Abstract A Hilbert space operator T is said to have property (ω1) if σα(T)/σaw(T) π00(T), where σα(T) andσαw(T) denote the approximate point spectrum and the Weyl essential approximate point spectrum of T respectively, and π00(T) ---- {λ∈ iso σ(T), 0 〈 dim N(T- λI) 〈 ∞}. Ifσα(T)/σαw(T) = π00(T), we say T satisfies property (w). In this note, we investigate the stability of the property (wi) and the property (w) under compact perturbations, and we characterize those operators for which the property (wi) and the property (w) are stable under compact perturbations.

关 键 词:Property (ω1) property (ω) compact perturbations 

分 类 号:O177.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象