检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:严林[1]
机构地区:[1]三峡大学计算机与信息学院,湖北宜昌443002
出 处:《卷宗》2014年第5期280-281,共2页
基 金:本文受到三峡大学硕士论文培优基金的支持(2013PY040)
摘 要:如何有效的描述每个人脸的个体特征,使之容易区别于其他人,是人脸识别特征抽取中最关键的一部分。近年来,子空间分析方法因其具有描述性强、计算代价小等优点在人脸识别领域中得到了广泛的使用。本文重点对线性子空间方法中2DPCA,2DLDA,2DICA做了理论上的比较,并利用matlab编程获得了实验数据的支持。同等的实验条件下,在ORL姿态库和CMU表情库的实验结果表明2DLDA识别效果最优,2DPCA识别效率最高,而无论是从识别率还是识别速度上来说,2DICA均介于二者之间。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145