New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics  被引量:1

New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics

在线阅读下载全文

作  者:范洪义 展德会 

机构地区:[1]Department of Material Science and Engineering, University of Science and Technology of China

出  处:《Chinese Physics B》2014年第6期18-22,共5页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.11175113);the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)

摘  要:By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.

关 键 词:generating function even- and odd-Hermite polynomials Hermite polynomial method techniqueof integral within an ordered product of operators 

分 类 号:O431.2[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象