检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]College of Optical and Electronic Technology, China Jiliang University [2]Department of Physics, South China University of Technology [3]College of Science, China Jiliang University
出 处:《Chinese Physics B》2014年第6期501-506,共6页中国物理B(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.61006051 and 61177050);the Zhejiang Provincial Natural Science Foundation,China(Grant No.Y1110777)
摘 要:The influence of vacancy defect on the doping of silicon nanowires is systematically studied by the first-principles calculations. The atomic structures and electronic properties of vacancies and vacancy-boron (vacancy-phosphor) com- plexes in H-passivated silicon nanowire with a diameter of 2.3 nm are explored. The results of geometry optimization indicate that a central vacancy can exist stably, while the vacancy at the edge of the nanowire undergoes a local surface reconstruction, which results in the extradition of the vacancy out of the nanowire. Total-energy calculations indicate that the central vacancy tends to form a vacancy-dopant defect pair. Further analysis shows that n-type doping efficiency is strongly inhibited by the unintentional vacancy defect. In contrast, the vacancy defect has little effect on p-type doping. Our results suggest that the vacancy defect should be avoided during the growth and the fabrication of devices.The influence of vacancy defect on the doping of silicon nanowires is systematically studied by the first-principles calculations. The atomic structures and electronic properties of vacancies and vacancy-boron (vacancy-phosphor) com- plexes in H-passivated silicon nanowire with a diameter of 2.3 nm are explored. The results of geometry optimization indicate that a central vacancy can exist stably, while the vacancy at the edge of the nanowire undergoes a local surface reconstruction, which results in the extradition of the vacancy out of the nanowire. Total-energy calculations indicate that the central vacancy tends to form a vacancy-dopant defect pair. Further analysis shows that n-type doping efficiency is strongly inhibited by the unintentional vacancy defect. In contrast, the vacancy defect has little effect on p-type doping. Our results suggest that the vacancy defect should be avoided during the growth and the fabrication of devices.
关 键 词:silicon nanowire VACANCY DOPING density-functional theory
分 类 号:TB383.1[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.120.195