检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]邯郸市中心血站,河北056001 [2]邯郸市疾病预防控制中心
出 处:《医学动物防制》2014年第5期480-483,共4页Journal of Medical Pest Control
摘 要:目的查找适用于研究麻疹发病率和气象因素之间关系的科学方法,探讨邯郸市麻疹的气象流行病学特征。方法收集1972-2010年邯郸市麻疹疫情资料、气象资料和人口资料,采用EpiData 3.0进行"双重录入",用SPSS17.0统计分析软件建立数据库,对数据进行统计分析。结果①气象参数的共线性诊断结果显示,本组气象因子数据容差最小为0.014,方差膨胀因子最大达69.998。②Spearman相关分析结果显示,邯郸市麻疹月发病率与月平均风速、月日照时数、月极端最高气温、月小型蒸发量呈显著性正相关,与月平均气压、月平均相对湿度呈显著性负相关(P<0.05或P<0.01)。③计划免疫之前麻疹月发病率没有拟合出理想的模型曲线,之后麻疹月发病率呈三次模型曲线。④麻疹月发病率与月平均风速之间得到曲线拟合方程y^=-28.349+48.241X-26.554X2+5.011X3。⑤气象参数的KMO和Bartlett检验结果显示,本文中的气象参数非常适合做因子分析,通过做主成分多元线性回归分析得到(方程y^=8.932+3.649Z2(P<0.01))。结论①邯郸市10个气象参数之间存在严重的多重共线性。②月平均风速是影响麻疹发病的主要气象因素。③邯郸市麻疹月发病率的模型曲线在计划免疫前后各不相同。④气象因素对麻疹发病的影响在总的影响因素中所占比例很小。Objective To look for the scientific method applying to research the relationships between the inci- dence of measles and meteorological factors, and to discuss the meteorological epidemiology characteristics of measles. Methods The data of measles, meteorological parameters and population of 1972 - 2010 in Handan were collected and inputted doubly'to EpiData 3.0, the database was established using SPSS17.0 statistical analysis software to analyze. Results ①Collinearity diagnosis of meteorological parameters showed that the minimal tolerance was 0. 014, the maximal variance inflation factor was 69. 998. ②The monthly incidence of measles had significant positive correlation with monthly average wind speed, monthly sunshine hours, monthly extreme maximum temperature, and monthly small - scale evaporation capacity, also had significant negative correlation with monthly average air pressure, the monthly average relative humidity by using Spearman corre- lation analysis (P 〈 0. 05 or P 〈 0. 01 ) . ③Before measles vaccine planned immunization, measles monthly incidence did not fit to the ideal curve model, and there was a cubic model curve after it. ④The curve fitting equation of measles monthly incidence and monthly average wind speed was y = - 28. 349 + 48. 241X - 26. 554X2 +5. 011X3. ⑤The result of KMO and Bartlett test of meteorological parameters showed that it was very suitable for factor analysis, the equation was obtained by principal component multivariate linear regres-sion analysis, y = 8. 932 + 3.649Z2 (P 〈 0.01 ) . Conclusions ①The problem of multi-collinearity in 10 meteorological parameters was very serious. ②Monthly average wind speed was the main meteorological factors influencing measles incidence. ③The model curves of the measles monthly incidence of were different before and after vaccine planned immunization. ④The influence of meteorological factors to the incidence of measlesaccounted for a very small proportion in the general influence factors.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117