机构地区:[1]New Materials & Function Coordination Chemistry Laboratory,Qingdao University of Science and Technology [2]Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials,Huaiyin Normal University
出 处:《Chinese Journal of Structural Chemistry》2014年第5期676-686,共11页结构化学(英文)
基 金:Supported by Doctor Foundation of Shandong Province(No.BS2010CL021);Natural Science Foundation of Shandong Province(ZR2009AL020);Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials P.R.China(JSKC12106 and JSKC12107)
摘 要:Two 1,8-naphthalimide derivatives of 7H-benzimidazo[2,1,-a]benz[de] isoquino- lin-7-one(1) and 4-bromo-7H-benzimidazo[2,1,-a]benz[de]isoquinolin-7-one(2) have been synthesized and characterized by elemental analysis, IR, 1H NMR, UV-Vis and fluorescence spectra. For the two compounds, density functional theory(DFT) calculations of the structures and natural population atomic charge analysis have been performed at the B3LYP/6-311G** level of theory. Based on Onsager reaction filed model and by using TD-DFT method at the B3LYP/6-311G** level, electron spectra of 1 and 2 with solvent effect in CHCl3 solvent have been predicted, which are in agreement with the experimental ones. Comparative studies on 1 and 2 indicate that introducing an electron-withdrawing group of Br into the 4-position of naphthalene ring in 2 does not significantly make the molecular geometry of 2 different from that of 1, but evidently changes the atomic charge redistribution, moves the positive-negative charges center and then changes the dipole moment in 2. Additionally, for compound 2, the existence of Br atom has also influenced the peak intensity and peak locations in both electron and fluorescence spectra.Two 1,8-naphthalimide derivatives of 7H-benzimidazo[2,1,-a]benz[de] isoquino- lin-7-one(1) and 4-bromo-7H-benzimidazo[2,1,-a]benz[de]isoquinolin-7-one(2) have been synthesized and characterized by elemental analysis, IR, 1H NMR, UV-Vis and fluorescence spectra. For the two compounds, density functional theory(DFT) calculations of the structures and natural population atomic charge analysis have been performed at the B3LYP/6-311G** level of theory. Based on Onsager reaction filed model and by using TD-DFT method at the B3LYP/6-311G** level, electron spectra of 1 and 2 with solvent effect in CHCl3 solvent have been predicted, which are in agreement with the experimental ones. Comparative studies on 1 and 2 indicate that introducing an electron-withdrawing group of Br into the 4-position of naphthalene ring in 2 does not significantly make the molecular geometry of 2 different from that of 1, but evidently changes the atomic charge redistribution, moves the positive-negative charges center and then changes the dipole moment in 2. Additionally, for compound 2, the existence of Br atom has also influenced the peak intensity and peak locations in both electron and fluorescence spectra.
关 键 词:1 8-naphthalimids DFT calculation atomic charge distribution electronic spectra fluorescence spectra
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...