检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁文平[1,2] 蔡文文[1] 刘丹[1] 董文杰[1]
机构地区:[1]北京师范大学,地表过程与资源生态国家重点实验室,北京100875 [2]中国科学院寒区旱区环境与工程研究所,冰冻圈科学国家重点实验室,甘肃兰州730000
出 处:《地球科学进展》2014年第5期541-550,共10页Advances in Earth Science
基 金:国家自然科学基金优秀青年基金项目“碳循环遥感模型”(编号:41322005);国家高技术研究发展计划项目“基于碳卫星的遥感定量检测应用技术研究”(2013AA122003)资助
摘 要:陆地生态系统植被生产力一直是全球变化领域内的研究热点,对其模拟的准确与否直接决定了后续碳循环要素的模拟精度,也关系到能否准确评估陆地生态系统对人类社会可持续发展的支持能力。遥感数据因其能够提供时空连续的植被变化信息,在区域植被生产力的模拟中扮演了不可替代的角色。目前遥感模型可以分为统计模型和过程模型2类。前者主要基于植被指数等与观测值的统计关系,从最初的线性关系发展到利用回归树等多变量的统计模型。后者则是基于光能利用率原理,借助于遥感数据的时空连续性实现对区域和全球植被生产力的准确评估。然而,这些模型在计算植物冠层吸收的光合有效辐射比例、环境对最大光能利用率的限制等诸多方面存在显著的差异,对于一些关键的生态系统过程描述不完善,总体而言模拟能力仍然有待提高。此外,遥感数据也被广泛地应用于动态植被模型的发展和应用中,为模拟提供植被类型、叶面积指数等关键的输入数据。后续的研究应该进一步改进模型公式,发展集合预估算法,并应考虑由于输入数据和参数的不确定性而导致的区域模拟误差,以提高对区域植被生产力的模拟精度。Vegetation, as the principal component of terrestrial ecosystem, plays an important role in sustaining global substance and energy cycle, adjusting carbon balance and alleviating the rise of atmospheric CO2concentration and global climate change. Vegetation production of terrestrial ecosystem has been one of the major subjects for the research on global change. The satellite-based model of vegetation productivity has undergone several stages of development, including the initial simple statistical model, the later process model based on light use efficiency principle. Based on remote sensing vegetation data with spatially and temporally continuous distribution, statistical model is crucial in estimating vegetation productivity on the regional and global scale. Statistical model can be classified into two categories : one is direct establishment of the correlation between vegetation index and vegetation productivity, based on which regional estimation is possible; the other is the establishment of regression parameter vector for regional applications, which is realized through the integrated utilization of vegetation indices and other environmental factors and using regression tree, neural network and other complex statistical methods. Light use efficiency model is the major approach to estimating vegetation productivity based on remote sensing data. However, there are large differences on the calculations of the fraction of absorbed photosynthetically active radiation, environmental stress factors, and the model performance also need improve. Future studies should continue to improve model ability, develop multiple model ensemble algorithms and provide simulation uncertainties.
分 类 号:P935.1[天文地球—自然地理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222