检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐晓斌[1] 张光卫[1] 王尚广[1] 孙其博[1] 杨放春[1]
机构地区:[1]北京邮电大学网络与交换技术国家重点实验室,北京100876
出 处:《通信学报》2014年第5期108-117,123,共11页Journal on Communications
基 金:教育部新世纪优秀人才支持计划基金资助项目(NCET100263);教育部博士点基金资助项目(20110005130001);国家高技术研究发展计划("863"计划)基金资助项目(2011AA01A102);国家自然科学基金资助项目(61272521)~~
摘 要:以节点数据的时空相关性为理论依据,通过定量数据与定性知识之间的不确定性转换,在知识层面上比较节点间数据的相似程度,实现对单节点数据的群体信任评估,进而设计了一种实时的WSN异常数据过滤方法,在节点数据采集过程中实时发现可疑数据。仿真实验验证了此方法不但能够实时过滤异常数据,提升WSN的入侵容忍能力,还有较低的通信及计算开销。Data security is the major challenge for WSN applications. It's significant in theory and practice to detect and filter false data effectively. Traditional approaches based on symmetric key, public key or polynomial always need large cost in transmission and computation, and could hardly detect the abnormal data caused by hardware of nodes. According to the spatio-temporal correlation of data in WSN, quantitative data can be converted to qualitative knowledge, and collective trust of data can be computed based on the comparisons of qualitative knowledge. A real-time outliner filtering approach was proposed to detect and filter abnormal data. Simulation results show that this method cannot only detect and filter the outliner in-time, but also need low cost in transmission and computation.
关 键 词:WSN安全 数据过滤 群体信任 云模型 入侵容忍
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145