一种面向多源领域的实例迁移学习  被引量:24

Instance-based Transfer Learning for Multi-source Domains

在线阅读下载全文

作  者:张倩[1] 李明[1] 王雪松[1] 程玉虎[1] 朱美强[1] 

机构地区:[1]中国矿业大学信息与电气工程学院,徐州221116

出  处:《自动化学报》2014年第6期1176-1183,共8页Acta Automatica Sinica

基  金:国家自然科学基金(61072094;61273143);江苏省自然科学基金(BK20130207);教育部新世纪优秀人才支持计划(NCET-10-0765);教育部高等学校博士学科点专项科研基金(20110095110016;20120095110025)资助~~

摘  要:在迁移学习最大的特点就是利用相关领域的知识来帮助完成目标领域中的学习任务,它能够有效地在相似的领域或任务之间进行信息的共享和迁移,使传统的从零开始的学习变成可积累的学习,具有成本低、效率高等优点.针对源领域数据和目标领域数据分布类似的情况,提出一种基于多源动态TrAdaBoost的实例迁移学习方法.该方法考虑多个源领域知识,使得目标任务的学习可以充分利用所有源领域信息,每次训练候选分类器时,所有源领域样本都参与学习,可以获得有利于目标任务学习的有用信息,从而避免负迁移的产生.理论分析验证了所提算法较单源迁移的优势,以及加入动态因子改善了源权重收敛导致的权重熵由源样本转移到目标样本的问题.实验结果验证了此算法在提高识别率方面的优势.The most remarkable characteristic of transfer learning is that it can employ the knowledge in relative domains to help perform the learning tasks in the domain of the target. With the use of different fields of knowledge for target task learning, transfer learning can transfer and share the information between similar domains or tasks, making the traditional learning from scratch an addable one, which implies that the learning efficiency is higher and the cost is lower. For the specific situation that the shared knowledge in the domains of the source and the target are sample data with similar distribution, an instance transfer learning method based on multi-sources dynamic TrAdaBoost is put forward. Integrated with the knowledge in multiple source domains, this method makes the target task learning the one that is able to make good use of the information of all source domains. Whenever candidate classifiers are trained, all the samples in all source domains are involved in learning, and the information conducive to target task learning can be obtained, so that negative transfer can be avoided. The theoretical analysis suggests that the given algorithm is better than the single source transfer. By means of adding the dynamic factor, this algorithm improves the defect that weight entropy drifts from source to target instances. The experimental results support that the given algorithm has the advantage of improving the recognition rate.

关 键 词:多源 TrAdaBoost 实例迁移 迁移学习 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象