检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics and Statistics,Chuxiong Normal University
出 处:《Acta Mathematica Sinica,English Series》2014年第7期1195-1209,共15页数学学报(英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.10861013);Academic Talents of Chuxiong Normal University(Grant No.09YJRC10)
摘 要:Let Mn be an n-dimensional submanifold without umbilical points in the (n + 1)-dimen- sional unit sphere Sn+l. Four basic invariants of Mn under the Moebius transformation group of Sn+1 are a 1-form Ф called moebius form, a symmetric (0, 2) tensor A called Blaschke tensor, a symmetric (0, 2) tensor B called Moebius second fundamental form and a positive definite (0, 2) tensor g called Moebius metric. A symmetric (0,2) tensor D = A + μB called para-Blaschke tensor, where μ is constant, is also an Moebius invariant. We call the para-Blaschke tensor is isotropic if there exists a function ,λ such that D = λg. One of the basic questions in Moebius geometry is to classify the hypersurfaces with isotropic para-Blaschke tensor. When λ is not constant, all hypersurfaces with isotropic para-Blaschke tensor are explicitly expressed in this paper.Let Mn be an n-dimensional submanifold without umbilical points in the (n + 1)-dimen- sional unit sphere Sn+l. Four basic invariants of Mn under the Moebius transformation group of Sn+1 are a 1-form Ф called moebius form, a symmetric (0, 2) tensor A called Blaschke tensor, a symmetric (0, 2) tensor B called Moebius second fundamental form and a positive definite (0, 2) tensor g called Moebius metric. A symmetric (0,2) tensor D = A + μB called para-Blaschke tensor, where μ is constant, is also an Moebius invariant. We call the para-Blaschke tensor is isotropic if there exists a function ,λ such that D = λg. One of the basic questions in Moebius geometry is to classify the hypersurfaces with isotropic para-Blaschke tensor. When λ is not constant, all hypersurfaces with isotropic para-Blaschke tensor are explicitly expressed in this paper.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.123