Hypersurfaces with Isotropic Para-Blaschke Tensor  被引量:1

Hypersurfaces with Isotropic Para-Blaschke Tensor

在线阅读下载全文

作  者:Jian Bo FANG Kun ZHANG 

机构地区:[1]Department of Mathematics and Statistics,Chuxiong Normal University

出  处:《Acta Mathematica Sinica,English Series》2014年第7期1195-1209,共15页数学学报(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.10861013);Academic Talents of Chuxiong Normal University(Grant No.09YJRC10)

摘  要:Let Mn be an n-dimensional submanifold without umbilical points in the (n + 1)-dimen- sional unit sphere Sn+l. Four basic invariants of Mn under the Moebius transformation group of Sn+1 are a 1-form Ф called moebius form, a symmetric (0, 2) tensor A called Blaschke tensor, a symmetric (0, 2) tensor B called Moebius second fundamental form and a positive definite (0, 2) tensor g called Moebius metric. A symmetric (0,2) tensor D = A + μB called para-Blaschke tensor, where μ is constant, is also an Moebius invariant. We call the para-Blaschke tensor is isotropic if there exists a function ,λ such that D = λg. One of the basic questions in Moebius geometry is to classify the hypersurfaces with isotropic para-Blaschke tensor. When λ is not constant, all hypersurfaces with isotropic para-Blaschke tensor are explicitly expressed in this paper.Let Mn be an n-dimensional submanifold without umbilical points in the (n + 1)-dimen- sional unit sphere Sn+l. Four basic invariants of Mn under the Moebius transformation group of Sn+1 are a 1-form Ф called moebius form, a symmetric (0, 2) tensor A called Blaschke tensor, a symmetric (0, 2) tensor B called Moebius second fundamental form and a positive definite (0, 2) tensor g called Moebius metric. A symmetric (0,2) tensor D = A + μB called para-Blaschke tensor, where μ is constant, is also an Moebius invariant. We call the para-Blaschke tensor is isotropic if there exists a function ,λ such that D = λg. One of the basic questions in Moebius geometry is to classify the hypersurfaces with isotropic para-Blaschke tensor. When λ is not constant, all hypersurfaces with isotropic para-Blaschke tensor are explicitly expressed in this paper.

关 键 词:Moebius geometry para-Blaschke tensor ISOTROPIC 

分 类 号:O183.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象