基于盲压缩感知模型的图像重构方法  被引量:7

Image reconstruction method based on blind compressed sensing model

在线阅读下载全文

作  者:吴超[1] 王勇[2] 田洪伟[2,3] 张凤[2] 郑娜[2] 楚天[2] 许录平[1] 

机构地区:[1]西安电子科技大学空间科学与技术学院 [2]西安电子科技大学电子工程学院 [3]中国人民解放军91245部队

出  处:《系统工程与电子技术》2014年第6期1050-1056,共7页Systems Engineering and Electronics

基  金:国家自然科学基金(61172138);中央高校基本科研业务费专项资金(K50511020020)资助课题

摘  要:为了解决压缩感知重建中噪声引起图像质量明显下降的问题,研究了自适应学习的压缩感知模型,提出了一种盲压缩感知图像重构方法。该方法采用盲压缩感知的稀疏矩阵与稀疏基交替更新的思想,应用了图像冗余变换和初始组合余弦变换基相结合的迭代策略,解决了压缩感知中的稀疏基难于表示的问题,抑制了噪声,提高了图像重构质量。通过实验验证所提方法较基于小波变换的正交匹配追踪方法和全变差方法有明显的噪声抑制功能,且能保持较好的图像纹理信息。In order to solve the problem of decreased image quality due to the poor robustness against noise in compressed sensing (CS)reconstruction,the CS model based on adaptive learning is studied and a new method applied to image reconstruction based on the blind compressed sensing (BCS)model is proposed.The proposed method employs the idea of alternating update of sparse base and sparse matrix from the BCS model,and adopts the strategy which combines the image redundant transform and initial combination of discrete cosine transform base,thus solving the problem that the sparse base is hard to express,restraining the noise and improving the image construction quality.The experimental results show that the proposed method has better robustness against noise and maintains better image texture information than the orthogonal matching pursuit based on wavelet method and the total variation method.

关 键 词:稀疏基 图像变换 组合离散余弦变换基 盲压缩感知 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象