硅微谐振式加速度计驱动电路参数优化  被引量:2

Parameter optimization of drive circuit in silicon resonant accelerometer

在线阅读下载全文

作  者:赵健[1] 苏岩[1] 赵阳[1] 夏国明[1] 

机构地区:[1]南京理工大学MEMS惯性技术研究中心,江苏南京210094

出  处:《光学精密工程》2014年第6期1500-1506,共7页Optics and Precision Engineering

基  金:国家863高技术研究发展计划资助项目(No.2011AA040402)

摘  要:将遗传算法与低频模型相结合,提出了一种快捷的驱动电路设计方法,用于提高低功耗硅微谐振式加速度计模拟驱动电路的瞬态性能,并缩短设计周期。该方法通过对闭环驱动电路模型进行高低频解耦,提取闭环驱动电路的低频模型;将提取的低频模型与遗传算法相结合,给出完整的优化方法,得到了满足各项实际约束的最优电路参数。针对某型硅微谐振式加速度计,建立了SIMULINK低频仿真模型,根据实际情况制定了约束条件。应用该方法求出了系统启动速度最快的PI控制器的参数,并对其进行了实验验证。起振实验结果表明,采用优化参数可使超调量小于50%,相位误差小于5°,1%调节时间从优化前的0.42s减少到优化后的0.19s,实验与仿真误差小于5%。得到的结果证明提出的方法正确有效,具有可实施性。A fast design method for the drive circuit was proposed by combining Genetic Algorithm (GA) with a low frequency model to improve the transient performance of analog drive circuit for a low-power Silicon Resonant Accelerometer(SRA) and to shorten its design cycle. The method decoupled the closed drive circuit model in high and low frequencies to extract a low-frequency model from drive close-loop circuits. Combined the low-frequency model with the GA, an optimization method was proposed to optimize the circuit parameters for meeting the different actual restraints. A simulation model was established in SIMULINK based on one type of micro silicon resonant accelerometer, and the optimal parameters of PI controller with a most start-up speed were obtained under constraint conditions. Finally, a start-up experiment was performed to testify the simulation results. It shows that the start-up time is shorten from previous 0.42 s to 0. 19 s and the over-shoot and phase error are less than 50%and 5°, respectively, The difference between the simulation and experiment is less than 5 %, which falls within the acceptable range. It proves that the optimization method is correct and effective.

关 键 词:硅微谐振式加速度计 闭环驱动 遗传算法 非线性系统 

分 类 号:TH824.4[机械工程—仪器科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象