检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武警工程大学信息工程系,西安710086 [2]西藏民族学院信息工程学院,咸阳712082
出 处:《科技导报》2014年第15期32-36,共5页Science & Technology Review
基 金:国家自然科学基金项目(60940007)
摘 要:传统多传感器环境下的目标识别方法主要有两种:利用多传感器获得的数据进行数据融合、利用每个传感器信号的特征向量进行特征融合。但这两种方法均存在目标识别精度不高的问题。针对这一问题,本文提出了一种基于D-S证据理论两次组合规则的融合方法。该方法在提出多传感器目标识别系统模型的基础上,运用D-S证据理论对单传感器的多特征信息进行数据融合;根据传感器接收信号信噪比来确定传感器可信度,将该可信度作为D-S证据理论组合规则中的证据权值,以此来完成目标识别。本文提出的方法综合考虑了传感器的多特征信息和传感器的可信度,克服了传统的D-S证据理论对证据冲突处理能力有限的缺陷。实验结果表明,该方法具有较高的正确性和有效性,提高了目标识别的精度。The traditional target recognition based on multi-sensor environment has two methods. On the one hand, the data obtained from the multi-sensor are used for data fusion, on the other hand the signal obtained from each sensor is used for feature fusion. The two methods both have the problem that the target recognition aecuraey is not high. In order to solve this problem, this paper presents a fusion method based on D-S evidence theory'. On the basis of a multi-sensor target recognition system model, D-S evidence theory is used for data fusion based on the multi-feature information of a single sensor. According to the sensor signal-noise ratios of the received signal the credibility is determined, which is taken as the weight of evidence of the weighted combination of D-S evidence theory rule to complete the target recognition. This method considers many characteristics information of the sensor and the reliability of the sensor, overcomes the defect that evidence conflict management ability is limited by the traditional D-S evidence theory. Experimental results show the correctness and validity of this method, as well as the improved accuracy of target recognition.
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15