A Sufficient Condition for Rigidity in Extremality of Teichmller Equivalence Classes by Schwarzian Derivative  

A Sufficient Condition for Rigidity in Extremality of Teichmller Equivalence Classes by Schwarzian Derivative

在线阅读下载全文

作  者:Masahiro Yanagishita 

机构地区:[1]Departments in Fundamental Science and Engineering, Waseda University, 3-4-1Okubo,Shinjuku, Tokyo 169-8555, Japan

出  处:《Analysis in Theory and Applications》2014年第1期130-135,共6页分析理论与应用(英文刊)

摘  要:The Strebel point is a TeichmOller equivalence class in the Teichmuller space that has a certain rigidity in the extremality of the maximal dilatation. In this paper, we give a sufficient condition in terms of the Schwarzian derivative for a Teichmuller equivalence class of the universal Teichmuller space under which the class is a Strebel point. As an application, we construct a Teichmuller equivalence class that is a Strebel point and that is not an asymptotically conformal class.The Strebel point is a TeichmOller equivalence class in the Teichmuller space that has a certain rigidity in the extremality of the maximal dilatation. In this paper, we give a sufficient condition in terms of the Schwarzian derivative for a Teichmuller equivalence class of the universal Teichmuller space under which the class is a Strebel point. As an application, we construct a Teichmuller equivalence class that is a Strebel point and that is not an asymptotically conformal class.

关 键 词:Strebel points the Schwarzian derivative asymptotically conformal maps. 

分 类 号:O186.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象