检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学电子信息与电气工程学部,辽宁大连116024 [2]国防信息学院一系,武汉430010
出 处:《计算机应用》2014年第A01期133-136,195,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(61003175)
摘 要:研究HIV-1蛋白酶的剪切特异性是研制蛋白酶抑制剂类药物的基础。针对HIV-1蛋白酶剪切位点预测改进一种新型的过滤器方法,去除特征集中的冗余特征,简化分类器结构。通过融合三种特征获得完备的特征表达并对支持向量机(SVM)进行参数优化从而提高预测性能。结果表明该方法的预测性能优于当前基于特征提取的研究成果,这表明特征选择结合特征融合并且进行SVM参数优化可以有效提高HIV-1蛋白酶剪切位点预测效果,能够为未来开发HIV-1蛋白酶抑制剂提供有用的帮助。Understanding the specificity of HIV-1 protease is crucial for designing HIV-1 protease inhibitors. A filter feature selection method was improved specially for HIV-1 protease cleavage site prediction, thus the redundant features were eliminated and the classifier was simplified. Three kinds of features were fused to make sure comprehensive feature representation and parameter optimization for Support Vector Machine (SVM) was conducted in order to improve prediction capability. The experiment results show that the method used in this paper gains better performance than the state-of-the-art researches based on feature extraction. This means feature selection combining feature fusion with classifier parameter optimization can effectively improve HIV-1 cleavage site prediction performance. Moreover the work in this paper can provide useful help for HIV-1 protease inhibitor developing in the future.
关 键 词:降维 模式识别 HIV-1 蛋白酶 特征融合 特征选择
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38