检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖玉学[1] 彭朝琼[1] 余淑苑[1] 慈捷元[1] 刘宁[1] 李斌[1] 严宙宁[1] 蓝涛[1] 吴永胜[1]
机构地区:[1]深圳市疾病预防控制中心
出 处:《华南预防医学》2014年第4期301-305,共5页South China Journal of Preventive Medicine
摘 要:目的探讨大气可吸入颗粒污染物(PM10)对医院呼吸系统疾病门诊量的影响。方法2012年1月1日至12月31日疾病资料来源于深圳市2家三级甲等综合性医院逐日门诊病例资料,空气污染物资料来自深圳市环境监测站,气象资料来自气象局。采用广义相加Poisson回归模型的时间序列分析,在控制长期趋势、星期几效应和气象等影响因素后,对大气PM10日均浓度与呼吸系统疾病日门诊量的关系和滞后效应进行分析。结果深圳市2012年全年日均大气PM10浓度为0.052mg/m^3,符合国家二级标准,2家医院全年呼吸系统门诊量为562174人次,平均1535.99人次/d。广义相加模型分析结果发现PM10日均浓度与呼吸系统疾病门诊量存在正相关关系。滞后6d时PM10日均浓度对呼吸系统疾病门诊量的影响最强[相对危险度(RR)为1.0047,95%CI:1.0036—1.0058]。引入CO、O3、NO2、SO2进行多污染物模型分析发现,多污染物模型的RR值相对单污染物模型有升有降(均P〈0.05),其中以双污染物模型PM10+SO2和三污染物模型PM10+CO+SO2中的PM10的RR值最高,分别为1.0059、1.0067。结论深圳市大气PM10污染与医院呼吸系统疾病日门诊量呈正相关关系,且存在滞后效应。Objective To quantitatively assess the impact of ambient PM10 on hospital outpatient visits for respiratory diseases. Methods Daily hospital outpatient visit data in 2012 were collected from two hospitals in Shenzhen. Daily meteorological and air pollution data in the same duration were obtained from Shenzhen Meteorological Bureau and Shenzhen Environmental Protection Bureau, respectively. A time-series analysis using a generalized additive model (GAM) was applied to assess the association be- tween ambient PM10 concentration and hospital outpatient visits for respiratory diseases after adjustment for long-term trend, day-of-week, meteorological factors and other air pollutants. Results The average PM10 concentration in Shenzhen in 2012 was 0. 052 mg/m^3 , meeting the national second-level standard. The to- tal outpatient visits of the two involved hospitals were 562 174 with an average of 1 535.99 persons per day. GAM models indicated a positive association between ambient PM10 concentration and hospital outpatient visits for respiratory diseases. In the single-pollutant models, the effect of PM10 was largest on lag 6 days (RR = 1. 004 7, 95% CI:1. 003 6- 1. 005 8). In multi-pollutant models adjustment for CO, 03, NO2 and SO2, the RRs for the increment of PM10 concentration varied, and the RRs in the models adjustment for SO2 ( RR = 1. 005 9) and models adjustment for CO and SO2 ( RR = 1. 006 7 ) were the largest two. Con- clusion The ambient PM10 concentration was positively associated with hospital outpatient visits for respir- atory diseases in Shenzhen, and a lag structure was found in these associations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222