检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:豆根生[1] 韩振宇[2] 周小刚[1] 安小宇[2]
机构地区:[1]河南农业大学理学院,郑州450002 [2]郑州轻工业学院电气信息工程学院,郑州450002
出 处:《河南师范大学学报(自然科学版)》2014年第3期170-176,共7页Journal of Henan Normal University(Natural Science Edition)
基 金:国家自然科学基金联合项目(U1204603);郑州市科学基金(C2009SP0009)
摘 要:针对图像处理问题中的模糊性问题,在不确定因素分类与影响分析的基础上实施去模糊处理,并与其他图像的降噪处理作比较.利用仿真实验系统地分析模型与算法的有效性;然后,利用小波变换对图像进行分解,提取小波系数和图像的能量特征,给出匹配与识别方法,通过实验与现有主要的目标识别方法作比较.结果表明,该识别法的识别精度高、速度快,比现有的目标识别方法的识别率平均提高了5.16%.This paper studies a variety of fuzzy signal, analyzes the uncertainties classification and their influence, implements to eliminate fuzziness processing, and compares with other methods on image processing with the combining method of simulation and instance experiments, this paper systematically analyzes the validity of the model and algorithms. Moreover, using the wavelet transform to carry out decompose the image, this paper extracts the wavelet coefficient and energy feature, gives the matching and recognition methods, and compares with the existing target recognition methods by experiment. Through experiment results, the proposed recognition method has the high precision, fast speed, which improves an average 5.16 % than that of existing recognition methods. These researches development in this paper can provide an important theoretical reference and practical significance to improve the real-time and accuracy on fuzzy target recognition.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.143.199