检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:武美玲[1] 郑旭[2] 崔海航[1] 李战华[2]
机构地区:[1]西安建筑科技大学环境与市政工程学院,西安710055 [2]中国科学院力学研究所、非线性力学国家重点实验室,北京100190
出 处:《水动力学研究与进展(A辑)》2014年第3期274-281,共8页Chinese Journal of Hydrodynamics
基 金:国家自然科学基金(21005058,11272322,11202219);高等学校博士学科点专项科研基金(20106120120011);陕西省教育厅专项科研计划项目(11JK0530)~~
摘 要:该文以微米级Pt-SiO2型Janus颗粒催化分解H2O2体系为研究对象,用MicroPTV技术观测Janus微颗粒在纯水及不同浓度(2.5%、5%和10%)H2O2溶液中的自驱动运动。实验结果表明:与经典布朗运动给出的定常扩散系数不同,Janus颗粒的有效扩散系数Deff与统计时间间隔有关:在短时间间隔内Deff线性增加,随后随时间间隔增长Deff趋于一稳定值,该值可达纯水中同粒径颗粒扩散系数的10–100倍。Deff由线性增加转变为稳定的特征时间τR随粒径增大而增大,与H2O2溶液浓度的关系不明显。进一步考察颗粒均方位移△L2、位矢转角γ的统计变化规律,清楚看出Janus颗粒的推进扩散到类布朗运动形式的转变。通过位矢转角γ的概率分布图可以定量确定τR。In this paper, micron-sized Pt-SiO2 Janus particles that utilize the asymmetrical catalytic decomposition reaction are chosen. The autonomous movement of Janus particles under water and the H2O2 solution with different concentrations (2.5%, 5% and 10%) is investigated through Micro-PTV platform. The experiment results show that the values of effective diffusion coefficient Deff of Janus particles are associated with the statistic time interval. In a short time interval, Deftt- increases linearly as the time interval increases; however, for a long enough time interval, Deft tends to a steady constant, which is about ten to onehundred times higher than that of in pure water with the same particle size. This behaviour about Janus particle is quiet different from the classical Brownian motion, where diffusion coefficient is unchanged. The characteristic time τR, from which the tendency of Deff turns to change from linear increase to steady platform, increases with the increase of particle size, but, the dependence of τR on the concentration of H2O2 solution is not so obvious. Furthermore, the mean squared displacement △L^2 and directional angle γ of Janus particles are investigated to obtain their statistic law. It is clear to show the conversion of Janus particles' movement from self-propulsion to Brownian-like motion. In the graphs about the probability distribution of directional angle, the characteristic time τR can be decided quantitatively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173