面向网络化车间制造的工序质量智能控制系统  

Networking-oriented Intelligent Control System for Workshop Manufacturing Process Quality

在线阅读下载全文

作  者:焦志曼[1] 袁佳[1] 余建波[1] 

机构地区:[1]上海大学机电工程与自动化学院,上海200072

出  处:《机械制造》2014年第6期1-5,共5页Machinery

基  金:国家自然科学基金资助项目(编号:51375290;编号:71001060);上海市教委科研创新项目(编号:13YZ002);国家质检总局科技计划项目(编号:2010QK245)

摘  要:针对分布式企业复杂的车间制造环境,如何进行实时有效的质量波动监控、异常波动的诊断分析以及过程中适时的工序调整,是进行工序质量控制面临的问题。提出了集质量监控-异常诊断-工序调整为一体的工序质量控制模式,构建了系统功能体系结构。综合运用相似制造、统计学习、神经网络、统计过程控制等理论,开发了面向网络化车间制造的工序质量智能控制系统。采用针对多品种、小批量过程的基于相似工序的工序质量控制技术和针对多变量过程的基于混合自组织映射模型的控制方法,应用B/S五层架构,完成了工序质量控制系统的开发,验证了系统的可行性,为网络化车间制造提供有效工序质量控制。The main issue faced by the process quality control under complicated workshop manufacturing environment in distributed enterprise is how to conduct real-time & effective monitor control upon quality fluctuations,diagnostic analysis of abnormal fluctuations and on-time regulations of the working procedures during the processes.This article proposes a mode for process quality control that integrates the quality control-diagnosis upon abnormality-regulations in working procedure to establish a system functional architecture.The networking-oriented intelligent control system for process quality in workshop is built by the application of theories on simulated manufacturing,statistical learning,neural network and statistical process control.It adopts a process quality control technique that is similar to the working procedures in multi-type & small-batch production as well as the controlling means for multivariable process that is built on the hybrid model with self-organized map,it also completes the development of the process quality control system by applying B/S 5-layer architecture to verify the feasibility of the system while furnishing effective quality control processes to the manufacturing workshops in networking.

关 键 词:工序 质量控制 网络化 车间制造 

分 类 号:TH165.4[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象