检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学自动化学院,江苏南京210016
出 处:《电子学报》2014年第5期1025-1029,共5页Acta Electronica Sinica
基 金:航空科学基金(No.2011ZD52050)
摘 要:可逆逻辑作为量子计算,纳米技术,低功耗设计等新兴技术的基础,近年来得到了越来越多的关注和研究.然而,大多数可逆逻辑综合方法对函数真值表表达形式的依赖使得综合电路规模受到了限制.决策图作为一种更加简洁的布尔函数表示方法,其为可逆逻辑综合提供了另一种途径.本文基于Kronecker函数决策图(KFDD)提出了一种适合于综合大规模电路的综合方法.该方法利用KFDD描述功能函数,以局部最优的方式从三种节点分解方法中寻找最优分解方法,并根据Kronecker函数决策图中不同类型的节点构建相应的可逆逻辑电路模块,最后将各节点替换电路模块实现级联得到结果电路.以可逆基准电路为例,对该方法进行了验证.实验结果表明,该方法能以较低的代价实现对较大规模函数的可逆逻辑电路综合.Reversible logic has obtained more and more attention and research as the basis for several emerging technologies such as quantum computing, nanotechnologies and low-power design. However, currently most synthesis algorithms for reversible circuits suffer from being restricted to deal with relatively small functions only, since they rely on a truth table representation of the function to be synthesized,Decision Diagram serving as a more compact Boolean function description provides anther way to synthesis of reversible logic. Here, a synthesis approach based on Kronecker Functional Decision Diagram (KFDD) is proposed, that generates KFDD for a logic function by means of choosing the local optimal one from three alternative node decomposition types. Finally, the result circuit can be produced by substituting all nodes of the KFDD with circuit modules and cascading them. Verified by reversible benchmarks, experiments show the adaption of the proposed approach to large functions with better results.
关 键 词:可逆逻辑电路综合 Kronecker函数决策图 节点分解方法 分解类型表
分 类 号:TP387[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.176