检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许闯[1] 罗志才[1,2] 周浩[1] 吴怿昊[1]
机构地区:[1]武汉大学测绘学院,武汉430079 [2]地球空间环境与大地测量教育部重点实验室,武汉430079
出 处:《测绘科学》2014年第6期12-17,34,共7页Science of Surveying and Mapping
基 金:国家自然科学基金项目(41174020;41131067);武汉大学地球空间环境与大地测量教育部重点实验室开放基金资助项目(11-02-08)
摘 要:本文详细讨论了重力固体潮观测数据预处理中平均滤波方法、加窗傅里叶变换方法和小波滤波方法。对于M2和S2的调和分析结果,平均滤波方法得到相位延迟误差超过了40°;加窗傅里叶变换得到的振幅因子精度分别为0.00029和0.00068,相位延迟精度分别为0.014°和0.033°;小波滤波方法得到最优的振幅因子精度分别为0.00013和0.00035,最优的相位延迟精度分别为0.006°和0.017°。研究结果表明:小波滤波方法的精度最高,加窗傅里叶变换的精度次之,平均滤波方法的精度最低;基于Daubechies小波基的小波滤波更适合于重力固体潮观测数据的预处理。Average filtering, windowed Fourier transform and wavelet filtering of pre-processing tidal gravity observations were discussed in this paper. To the harmonic analysis results of M2 and S2, the error of phase delay getting from average filtering method was more than 40 degree; the accuracies of the ampli- tude factors getting from windowed Fourier transform method were 0. 00029 and 0. 00068, and those of the phase delay were 0. 014 and 0. 033 degree; the performances of the amplitude factors getting from wavelet filtering method were 0. 00013 and 0. 00035, and those of the phase delay were 0. 006 and 0. 017 degree. The results showed that the performance of wavelet filtering was the best, and followed by win- dowed Fourier transform and average filtering. In addition, Daubechies wavelet filtering was more suitable for pre-processing tidal gravity observations.
关 键 词:重力固体潮 平均滤波 小波滤波 加窗傅里叶变换 预处理
分 类 号:P312.1[天文地球—固体地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.239.180