检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张仲彬[1] 李煜[1] 郭进生[1] 李兴灿[1] 许中川 徐志明[1]
机构地区:[1]东北电力大学能源与动力工程学院,吉林吉林132012 [2]福建华电可门发电有限公司,福建福州350500
出 处:《东北电力大学学报》2014年第2期1-6,共6页Journal of Northeast Electric Power University
基 金:国家重点基础研究发展规划基金项目(2007CB206904);东北电力大学博士启动基金项目(BSJXM-200916)
摘 要:通过动态监测板式换热器冷却水污垢热阻及影响污垢热阻的松花江水水质参数(如pH值、溶解氧、铁离子、氯离子、细菌总数、浊度、电导率、化学需氧量、碱度和硬度等)变化。采用BP神经网络主成分分析、主成分回归、全要素BP神经网络三种预测方法建立板式换热器污垢热阻预测模型,选取1-15号样本为训练或回归拟合样本,16-20号样本为测试样本,并将三种方法的预测结果进行了对比。结果表明,三种方法均可对板式换热器污垢特性进行有效预测,而基于主成分分析的BP神经网络方法的预测结果误差小,优于另外两种方法。The fouling resistance of cooling water in a plate heat exchanger and variation of water quality parameters ( such as pH, dissolved oxygen, Fe3+, CI-, total bacteria, turbidity, electrical conductivity, COD, alkalinity, hardness and so on)which influences the fouling resistance were dynamically monitored. Defining Samples 1-15 as the training or regression samples as well as Samples 16-20 as the testing samples,three forecasting models of fouling resistance in the plate heat exchanger were established by the BP neural network based on the principal component analysis, the single principal component regression and the total factors' BP neural network respectively. Besides,forecastlng results lay mree memods were contrasteu with total factors'BP neural that the fouling characteristic of the plate heat exchanger could be predicted by aforesaid three methods effectively and the BP neural network based on the principal component analysis whose forecasting error is the least is better than the other two methods.
分 类 号:TK124[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.107.69