检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:东启亮[1] 林辉[1] 孙华[1] 臧卓[1] 胡佳[1,2] 范应龙[2]
机构地区:[1]中南林业科技大学林业遥感信息工程研究中心,湖南长沙410004 [2]中国林业科学研究院资源信息所,北京100091
出 处:《湿地科学》2014年第3期332-339,共8页Wetland Science
基 金:国家重大专项项目(E0305/1112/02);国家"十二五"863计划项目(2012AA102001)资助
摘 要:拟探索提高中、高分辨率遥感影像湿地分类精度的新方法,为洞庭湖湿地研究提供方法支持。通过将独立分量分析方法应用于遥感图像分类,并与主成分分析方法结果进行对比,验证其是否能有效提高湿地分类精度。结果表明,应用独立分量分析和主成分分析方法处理遥感影像,没有造成图像信息损失;Landsat5TM影像经过两种方法处理后,影像清晰度变差,但并不足以影响典型湿地类型的目视判读;SPOT5影像经过两种方法处理后,影像更加清晰。独立分量分析方法可以明显提高典型湿地类型的可分性,但对于草滩地和水田的分类仍然存在缺陷。Landsat 5TM影像经独立分量分析算法处理后,总体精度比原始影像提高11.83%,比用主成分分析方法处理后的影像精度高5.35%;SPOT 5影像经独立分量分析算法处理后,总体精度比原始影像提高10.7%,比用主成分分析方法处理后的影像精度高5.07%。独立分量分析基于高阶统计信息,不但能去除波段之间的相关性,而且可以得到分量之间相互独立的特性,增强不同湿地类型的可分离性,从而提高了信息提取的精度。This study aimed at exploring method to improve the classification accuracy of high resolution remote sensing image, which could support the research on the wetlands in Dongting Lake area. The results showed the information of images processed by independent component analysis (ICA) and principal component analysis (PCA) methods had not been lost; after PCA and ICA processing, the sharpness of the images were deteriorated, but not enough to affect the visual interpretation of the typical wetland types; SPOT 5 image became clearer after PCA and/CA processing. ICA method could significantly improve the divisibility of the typical wetlands in Dongting Lake, but it still has shortages on classify marshes and paddy fields. For Landsat 5 TM image, compared to the original image, the overall accuracy increased by 11.83% after the image processed by ICA method, that was 5.35% higher than by PCA method. For SPOT 5 image, compared to the original image, the overall accuracy increased by 10.7% after the image processed by ICA method, that was 5.07% higher than by PCA method. Based on the higher-order statistics information, independent component analysis method could not only remove the correlation between the bands, but also obtain the independent component characteristics, enhancing separability between wetland types. It also could effectively remove the negative impact of the typical wetland classification, and improve the accuracy of wetland information extraction.
分 类 号:S759.92[农业科学—森林经理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117