结合危险理论的故障检测免疫模型  被引量:1

An Immune Model for Network Fault Detection Based on Danger Theory

在线阅读下载全文

作  者:王三虎[1] 

机构地区:[1]吕梁学院计算机科学与技术系,山西吕梁033000

出  处:《计算机测量与控制》2014年第6期1693-1696,1699,共5页Computer Measurement &Control

基  金:吕梁学院自然基金项目(ZRXN201216;ZRXN201308)

摘  要:为了实现快速准确的网络故障检测与诊断,将危险理论与动态克隆选择算法相结合,提出了用于网络故障检测的危险理论免疫模型;并针对网络故障特点,对危险理论与动态克隆选择算法进行了改进;首先采用危险理论模型对抗原进行危险信号浓度识别,并利用成熟检测器检测已知故障类型,其次用改进的动态克隆选择算法对未知故障进行有效的学习;通过对多种网络故障类型检测的仿真实验,证明了新模型不仅具有更好的检测效果和动态适应性,而且能够提高检测效率与准确率。Aiming at the fast and accurate network fault detection and diagnosis, combining the danger theory with dynamic clonal selec- tion algorithm, a danger theory based immune model used for network fault detection is proposed. And according to the characteristics of net- work failure to improve danger theory and dynamic clonal selection algorithm. Firstly, the concentration of antigen danger signal is recognized by using the danger theory model, and using the mature detector to detect known fault type. Then an improved clonal selection algorithm is set up to learn the unknown fault types. Experiments were undertaken with various type of network fault diagnosis to demonstrate that the model not only has better detection rate and adaptability but also can improve the efficiency and accuracy.

关 键 词:危险理论 人工免疫系统 网络故障检测 动态克隆选择算法 

分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象