悖论的自指性与循环性  被引量:2

Self-reference and Circularity of Paradoxes

在线阅读下载全文

作  者:熊明[1] 

机构地区:[1]华南师范大学政治与行政学院

出  处:《逻辑学研究》2014年第2期1-19,共19页Studies in Logic

基  金:国家社会科学基金青年项目"哲学逻辑视角下的真理论研究"(10CZX036)

摘  要:本文使用语义网分析悖论与自指性和循环性。主要结论是证明了有穷悖论都是自指的,同时其矛盾性必定基于循环性。我们还证明存在非自指但基于循环性的(无穷)悖论,比如亚布鲁悖论及其一般变形;又证明了存在自指但不基于循环性的(无穷)悖论,比如超穷赫兹伯格悖论和麦基悖论。这表明自指性与循环性对悖论而言是两个不同的概念。In the present paper, the sentence nets are used to determine the self-reference and circularity of paradoxes. The main result is that all finite paradoxes must be self-referential and they are also circularity-dependent in the sense that their paradoxicality is based upon some certain circularity. We also prove that there are non-self-referential but circularity-dependent (infinite) paradoxes, such as Yablo’s paradox and its variants;and there are also non-circularity-dependent but self-referential (infinite) paradoxes, such as the transfinite Herzberger’s paradoxes and McGee’s paradox. It suggests that the self-reference and the circularity are two different conceptions with respect to the paradoxes.

关 键 词:悖论 框架 循环性 语义网 自指性 

分 类 号:B812[哲学宗教—逻辑学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象