Local Bifurcation of Critical Periods for a Class of Liénard Equations  被引量:1

Local Bifurcation of Critical Periods for a Class of Liénard Equations

在线阅读下载全文

作  者:Yi SHAO Chun-xiang A 

机构地区:[1]School of Mathematics and Statistics,Zhaoqing University

出  处:《Acta Mathematicae Applicatae Sinica》2014年第3期627-634,共8页应用数学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.11201086 and No.11301105)

摘  要:In this paper, we study the local bifurcation of critical periods near the nondegenerate center (the origin) of a class of Li@nard equations with degree 2n, and prove that at most 2n - 2 critical periods (taken into account multiplicity) can be produced from a weak center of finite order. We also prove that it can have exactly 2n - 2 critical periods near the origin.In this paper, we study the local bifurcation of critical periods near the nondegenerate center (the origin) of a class of Li@nard equations with degree 2n, and prove that at most 2n - 2 critical periods (taken into account multiplicity) can be produced from a weak center of finite order. We also prove that it can have exactly 2n - 2 critical periods near the origin.

关 键 词:period function critical periods local bifurcation 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象