Semiparametric Empirical Likelihood Estimation for Two-stage Outcome-dependent Sampling under the Frame of Generalized Linear Models  被引量:2

Semiparametric Empirical Likelihood Estimation for Two-stage Outcome-dependent Sampling under the Frame of Generalized Linear Models

在线阅读下载全文

作  者:Jie-li DING Yan-yan LIU 

机构地区:[1]School of Mathematics and Statistics,Wuhan University

出  处:《Acta Mathematicae Applicatae Sinica》2014年第3期663-676,共14页应用数学学报(英文版)

基  金:Jie-li DING is supported by the National Natural Science Foundation of China(No.11101314),Yan-yan LIU s supported by the National Natural Science Foundation of China(No.11171263,No.11371299)

摘  要:Epidemiologic studies use outcome-dependent sampling (ODS) schemes where, in addition to a simple random sample, there are also a number of supplement samples that are collected based on outcome variable. ODS scheme is a cost-effective way to improve study efficiency. We develop a maximum semiparametric empirical likelihood estimation (MSELE) for data from a two-stage ODS scheme under the assumption that given covariate, the outcome follows a general linear model. The information of both validation samples and nonvalidation samples are used. What is more, we prove the asymptotic properties of the proposed MSELE.Epidemiologic studies use outcome-dependent sampling (ODS) schemes where, in addition to a simple random sample, there are also a number of supplement samples that are collected based on outcome variable. ODS scheme is a cost-effective way to improve study efficiency. We develop a maximum semiparametric empirical likelihood estimation (MSELE) for data from a two-stage ODS scheme under the assumption that given covariate, the outcome follows a general linear model. The information of both validation samples and nonvalidation samples are used. What is more, we prove the asymptotic properties of the proposed MSELE.

关 键 词:biased-sampling two-stage design empirical likelihood generalized linear models large-sample properties. 

分 类 号:O212.7[理学—概率论与数理统计] O212[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象