Z_2-Equivariant Cubic System Which Yields 13 Limit Cycles  被引量:1

Z_2-Equivariant Cubic System Which Yields 13 Limit Cycles

在线阅读下载全文

作  者:Yi-rong LIU Ji-bin LI 

机构地区:[1]School of Mathematics,Central South University [2]Department of Mathematics,Zhejiang Normal University [3]School of Science,Kunming University of Science and Technology

出  处:《Acta Mathematicae Applicatae Sinica》2014年第3期781-800,共20页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(No.11371373 and 10831003)

摘  要:For the planar Z2-equivariant cubic systems having two elementary focuses, the characterization of a bi-center problem and shortened expressions of the first six Lyapunov constants are completely solved. The necessary and sufficient conditions for the existence of the bi-center are obtained. On the basis of this work, in this paper, we show that under small Z2-equivariant cubic perturbations, this cubic system has at least 13 limit cycles with the scheme 1 6 ∪ 6.For the planar Z2-equivariant cubic systems having two elementary focuses, the characterization of a bi-center problem and shortened expressions of the first six Lyapunov constants are completely solved. The necessary and sufficient conditions for the existence of the bi-center are obtained. On the basis of this work, in this paper, we show that under small Z2-equivariant cubic perturbations, this cubic system has at least 13 limit cycles with the scheme 1 6 ∪ 6.

关 键 词:planar dynamical system limit cycles BIFURCATIONS Lyapnov constant weak focus 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象