Soret and Dufour effects on mixed convection unsteady MHD boundary layer flow over stretching sheet in porous medium with chemically reactive species  

Soret and Dufour effects on mixed convection unsteady MHD boundary layer flow over stretching sheet in porous medium with chemically reactive species

在线阅读下载全文

作  者:A.NAYAK S.PANDA D.K.PHUKAN 

机构地区:[1]Silicon Institute of Technology, Bhubaneswar 751024, India [2]Department of Mathematics, National Institute of Technology, Calicut 673601, India [3]Department of Mathematics, Moran College, Moranhat, Assam 785670, India

出  处:《Applied Mathematics and Mechanics(English Edition)》2014年第7期849-862,共14页应用数学和力学(英文版)

摘  要:This paper studies the thermal-diffusion and diffusion thermo-effects in the hydro-magnetic unsteady flow by a mixed convection boundary layer past an imperme- able vertical stretching sheet in a porous medium in the presence of chemical reaction. The velocity of t^he stretching surface, the surface temperature, and the concentration are assumed to vary linearly with the distance along the surface. The governing partial differential equations are transformed into self-similar unsteady equations using similarity transformations .and solved numerically by the Runge-Kutta fourth order scheme in as- sociation with the shooting method for the whole transient domain from the initial state to the final steady state flow. Numerical results for the velocity, the temperature, the concentration, the skin friction, and the Nusselt and Sherwood numbers are shown graph- ically for various flow parameters. The results reveal that there is a smooth transition of flow from unsteady state to the final steady state. A special case of our results is in good agreement with an earlier published work.This paper studies the thermal-diffusion and diffusion thermo-effects in the hydro-magnetic unsteady flow by a mixed convection boundary layer past an imperme- able vertical stretching sheet in a porous medium in the presence of chemical reaction. The velocity of t^he stretching surface, the surface temperature, and the concentration are assumed to vary linearly with the distance along the surface. The governing partial differential equations are transformed into self-similar unsteady equations using similarity transformations .and solved numerically by the Runge-Kutta fourth order scheme in as- sociation with the shooting method for the whole transient domain from the initial state to the final steady state flow. Numerical results for the velocity, the temperature, the concentration, the skin friction, and the Nusselt and Sherwood numbers are shown graph- ically for various flow parameters. The results reveal that there is a smooth transition of flow from unsteady state to the final steady state. A special case of our results is in good agreement with an earlier published work.

关 键 词:heat and mass transfer boundary layer flow porous media magnetic field Soret number Dufour number 

分 类 号:O361.3[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象