检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡剑[1]
出 处:《重庆师范大学学报(自然科学版)》2014年第4期12-15,共4页Journal of Chongqing Normal University:Natural Science
摘 要:对不定二次规划,本文提出了一种线性化技术,将其近似地转化为一个线性规划问题;然后,结合后者的线性约束条件,提出了一个缩减子超矩形算法,该算法的主要思想是对于违犯线性约束条件的变量,从箱约束条件中先行删除,再利用分枝算法求最优值点。本文证明了算法的全局收敛性。数值算例表明,对于大规模的二次规划问题,仍能快速求出结果。A linear transformation method is presented to solve indefinite quadratic programming in this paper. First, the method is to translate indefinite quadratic programming into a relaxed linear programming. Then, according o the linear constraints the reduced sub-super-rectangle algorithm is proposed. The variable which unsatisfied linear constraints is deleted from box constraints by using the algorithm. After that, the results of optimM point are calculated by using the branching algorithm. The global convergence of the algorithm is proved in this paper. In order to verify the validity of the algorithm, a large scale indefinite quadratic programming is increased. The new algorithm is still applicable. The numerical example shows that the algorithm can quickly calculate the results.
分 类 号:O221.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52