约束不定二次规划的一个快速收敛算法  

Fast Convergence Algorithm for Indefinite Quadratic Programming Problems with the General Bound

在线阅读下载全文

作  者:蔡剑[1] 

机构地区:[1]南京航空航天大学金城学院,南京211156

出  处:《重庆师范大学学报(自然科学版)》2014年第4期12-15,共4页Journal of Chongqing Normal University:Natural Science

摘  要:对不定二次规划,本文提出了一种线性化技术,将其近似地转化为一个线性规划问题;然后,结合后者的线性约束条件,提出了一个缩减子超矩形算法,该算法的主要思想是对于违犯线性约束条件的变量,从箱约束条件中先行删除,再利用分枝算法求最优值点。本文证明了算法的全局收敛性。数值算例表明,对于大规模的二次规划问题,仍能快速求出结果。A linear transformation method is presented to solve indefinite quadratic programming in this paper. First, the method is to translate indefinite quadratic programming into a relaxed linear programming. Then, according o the linear constraints the reduced sub-super-rectangle algorithm is proposed. The variable which unsatisfied linear constraints is deleted from box constraints by using the algorithm. After that, the results of optimM point are calculated by using the branching algorithm. The global convergence of the algorithm is proved in this paper. In order to verify the validity of the algorithm, a large scale indefinite quadratic programming is increased. The new algorithm is still applicable. The numerical example shows that the algorithm can quickly calculate the results.

关 键 词:不定二次规划 线性化技术 子超矩形 全局优化 

分 类 号:O221.2[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象