检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology
出 处:《Advances in Polar Science》2014年第2期113-120,共8页极地科学进展(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant nos.41276191 and 40930848)
摘 要:Atmospheric and oceanic drag are the main environmental forces controlling sea ice drift. Oceanic drag includes the form drag generated by water pressure gradients on the side of ice floes or on ice ridges, and the skin friction generated by viscous flow on the bottom of ice floes. In this study, we carried out a two-dimensional numerical simulation using FLUENT software to investigate the characteristics of dynamic flow under ice with a smooth undersurface. We studied water drag and flow field distribution below the ice under different conditions of ice draft and flow velocity, and the results agreed well with data from laboratory-based physical modeling tests, demonstrating the ability of the numerical model to reproduce the dynamic interactions between sea ice and the flow field. The degree of distortion in the flow field caused by ice increased as the ice draft increased. Vortexes occurred in the wake field of the floe, and the centers of the vortexes moved away from the ice with increasing ice draft. The simulated drag of water on ice showed a clear linear relationship with the square of the flow velocity.Atmospheric and oceanic drag are the main environmental forces controlling sea ice drift. Oceanic drag includes the form drag generated by water pressure gradients on the side of ice floes or on ice ridges, and the skin friction generated by viscous flow on the bottom of ice floes. In this study, we carried out a two-dimensional numerical simulation using FLUENT software to investigate the characteristics of dynamic flow under ice with a smooth undersurface. We studied water drag and flow field distribution below the ice under different conditions of ice draft and flow velocity, and the results agreed well with data from laboratory-based physical modeling tests, demonstrating the ability of the numerical model to reproduce the dynamic interactions between sea ice and the flow field. The degree of distortion in the flow field caused by ice increased as the ice draft increased. Vortexes occurred in the wake field of the floe, and the centers of the vortexes moved away from the ice with increasing ice draft. The simulated drag of water on ice showed a clear linear relationship with the square of the flow velocity.
关 键 词:FLUENT ice dynamics drag flow field numerical simulation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124