Numerical simulation of the dynamic characteristics of flow fields under ice  

Numerical simulation of the dynamic characteristics of flow fields under ice

在线阅读下载全文

作  者:SUN Hui LU Peng LI Zhijun 

机构地区:[1]State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology

出  处:《Advances in Polar Science》2014年第2期113-120,共8页极地科学进展(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant nos.41276191 and 40930848)

摘  要:Atmospheric and oceanic drag are the main environmental forces controlling sea ice drift. Oceanic drag includes the form drag generated by water pressure gradients on the side of ice floes or on ice ridges, and the skin friction generated by viscous flow on the bottom of ice floes. In this study, we carried out a two-dimensional numerical simulation using FLUENT software to investigate the characteristics of dynamic flow under ice with a smooth undersurface. We studied water drag and flow field distribution below the ice under different conditions of ice draft and flow velocity, and the results agreed well with data from laboratory-based physical modeling tests, demonstrating the ability of the numerical model to reproduce the dynamic interactions between sea ice and the flow field. The degree of distortion in the flow field caused by ice increased as the ice draft increased. Vortexes occurred in the wake field of the floe, and the centers of the vortexes moved away from the ice with increasing ice draft. The simulated drag of water on ice showed a clear linear relationship with the square of the flow velocity.Atmospheric and oceanic drag are the main environmental forces controlling sea ice drift. Oceanic drag includes the form drag generated by water pressure gradients on the side of ice floes or on ice ridges, and the skin friction generated by viscous flow on the bottom of ice floes. In this study, we carried out a two-dimensional numerical simulation using FLUENT software to investigate the characteristics of dynamic flow under ice with a smooth undersurface. We studied water drag and flow field distribution below the ice under different conditions of ice draft and flow velocity, and the results agreed well with data from laboratory-based physical modeling tests, demonstrating the ability of the numerical model to reproduce the dynamic interactions between sea ice and the flow field. The degree of distortion in the flow field caused by ice increased as the ice draft increased. Vortexes occurred in the wake field of the floe, and the centers of the vortexes moved away from the ice with increasing ice draft. The simulated drag of water on ice showed a clear linear relationship with the square of the flow velocity.

关 键 词:FLUENT ice dynamics drag flow field numerical simulation 

分 类 号:P731.15[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象