检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许海云[1] 刘春江[1] 雷炳旭 李灵慧[1] 方曙[1]
机构地区:[1]中国科学院成都文献情报中心
出 处:《图书情报工作》2014年第12期95-101,共7页Library and Information Service
基 金:2014年国家社会科学基金青年项目"学科交叉主题识别和预测方法研究"(项目编号:14CTQ033)研究成果之一
摘 要:将学科交叉的定量化研究分为计量指标和可视化两种方式,深入分析Rao-Stirling、信息熵、中介中心度、网络密度和网络核心度5种指标的计量差异和学科交叉覆盖地图的可视化方式。在此基础上,以Web of Science数据库收录的2001-2010年间情报学期刊论文为数据源做学科交叉度计量的实证研究,分析5种交叉度计量指标的计量特征和指标间的相关关系。研究发现:情报学在这10年间并未与与本学科跨度较大的学科形成更多交叉,同时情报学在其研究领域内的核心地位有所减弱,并通过学科交叉覆盖图展示情报学研究领域的范围以及与情报学关系最为密切的学科领域。Discipline-crossing is becoming more and more widely in scientific research, and lots of important technology breakthroughs spring up in discipline-crossing fields, therefore quantitative study for discipline-crossing is significant to science development and technology management. Quantitative study of discipline-crossing mainly consists of two ways: indicators and maps. Firstly, we analyzed the differences between Rao-Stiding, Shannon Entropy, Between Centrality, Network Density and Network Coreness in depth, and also the characteristic of discipline-crossing overlay map. Secondly, we made an empirical study to Information Science & Library Science from 2001 to 2010 in Web of Science, and also got the correlation. We find the cross-degree doesn't expand between Information Science & Library Science and larger span disciplines, and its core position has been weakened. Finally, through discipline-crossing coverage map, we show the areas of Information Science & Library Science research range as well as disciplines that have closest relationship with Information Science.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52